HDU 3341 AC自动机+DP

题意

给一堆模板串,以及一个文本串。文本串可以调换顺序,问经过一些调换后,最大能匹配的模板串数量是多少?

题解

状态转移方程还是很容易想出来的,毕竟AC自动机的状态转移很明显。基于last数组进行DP就行了。
这道题的难点在于文本串的状态表示。文本串长度为40,如果开一个40*40*40*40的数组表示状态,那么肯定会MLE。所以需要把文本串进行变进制压缩。变进制压缩的过程就是将ACGT根据相应的个数进行一个最大限度的压缩。这样压缩完成以后,所有状态的总和不超过11*11*11**11。这个内存大小就是完全可以接受的,因此只需要在DP的时候进行一下进制转换,就可以解决问题了。

注意事项

需要特别注意对于num已经满足文本串的情况,需要continue掉。千万不能根据当前的长度值i+dig[k]<=总长度值来进行判断。这样会产生不满足条件的状态。

代码

#include <iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#include<string>
#include<set>
#include<map>
#include<bitset>
#include<stack>
#include<string>
#define UP(i,l,h) for(int i=l;i<h;i++)
#define DOWN(i,h,l) for(int i=h-1;i>=l;i--)
#define W(a) while(a)
#define MEM(a,b) memset(a,b,sizeof(a))
#define INF 0x3f3f3f3f
#define LL long long
#define MAXN 10000
#define EPS 1e-10
#define MOD 20090717

using namespace std;

char st[15];
char tar[50];
int ch[550][4];
int f[550],val[550],last[550];
int sz;
int dp[20010][550];

int getNum(char c) {
    if(c=='A') {
        return 0;
    } else if(c=='C') {
        return 1;
    } else if(c=='T') {
        return 2;
    } else if(c=='G') {
        return 3;
    }
}

void insert() {
    int len=strlen(st);
    int u=0;
    UP(i,0,len) {
        int x=getNum(st[i]);
        if(!ch[u][x]) {
            val[sz]=0;
            ch[u][x]=sz++;
        }
        u=ch[u][x];
//        cout<<ch[0][x]<<endl;
    }
    val[u]++;
//    cout<<val[u]<<" "<<u<<endl;
}

void getFail() {
    MEM(last,0);
    MEM(f,0);
    queue<int> q;
    UP(i,0,4) {
        int x=ch[0][i];
        if(x) {
            q.push(x);
            last[x]=val[x];
        }
    }
    W(!q.empty()) {
        int r=q.front();
        q.pop();
        UP(i,0,4) {
            int u=ch[r][i];
            if(!u) {
                ch[r][i]=ch[f[r]][i];
                continue;
            }
            q.push(u);
            int v=f[r];
            f[u]=ch[v][i];
            last[u]=last[f[u]]+val[u];
        }
    }
}

int main() {
    int n;
    int ks=1;
    W(~scanf("%d",&n)) {
        if(n==0)
            break;
        MEM(ch,0);
        MEM(val,0);
        sz=1;
        UP(i,0,n) {
            scanf("%s",st);
            insert();
        }
        getFail();
        scanf("%s",tar);
        int len=strlen(tar);
        MEM(dp,-1);
        dp[0][0]=0;
        int num[4];
        MEM(num,0);
        UP(i,0,len) {
            num[getNum(tar[i])]++;
        }
        int dig[4];
        MEM(dig,0);
        dig[0]=1;
        dig[1]=num[0]+1;
        dig[2]=(num[1]+1)*(num[0]+1);
        dig[3]=(num[2]+1)*(num[1]+1)*(num[0]+1);
        int status=num[0]*dig[0]+num[1]*dig[1]+num[2]*dig[2]+num[3]*dig[3];
        UP(a,0,num[0]+1) {
            UP(b,0,num[1]+1) {
                UP(c,0,num[2]+1) {
                    UP(d,0,num[3]+1) {
                        int i=a*dig[0]+b*dig[1]+c*dig[2]+d*dig[3];
                        UP(j,0,sz) {
                            if(dp[i][j]==-1) {
                                continue;
                            }
                            UP(k,0,4) {
                                int u=ch[j][k];
                                if(k==0&&a==num[0])
                                    continue;
                                if(k==1&&b==num[1])
                                    continue;
                                if(k==2&&c==num[2])
                                    continue;
                                if(k==3&&d==num[3])
                                    continue;
//                                    cout<<u<<" "<<last[u]<<endl;
                                if(last[u])
                                    dp[i+dig[k]][u]=max(dp[i+dig[k]][u],dp[i][j]+last[u]);
                                else
                                    dp[i+dig[k]][u]=max(dp[i+dig[k]][u],dp[i][j]);
//                        cout<<dp[i+1][u]<<" "<<u<<" "<<i+1<<" "<<j<<" "<<dp[i][j]<<" "<<i+dig[k]<<endl;
                            }
                        }
                    }
                }
            }
        }
        int ans=0;
        UP(i,0,sz) {
            ans=max(ans,dp[status][i]);
        }
        printf("Case %d: %d\n",ks++,ans);
    }
}

/*
2
C
C
CCCCC
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值