在深度学习领域,很多成功的案例可以归因于增量学习技术。增量学习有两个优点。首先,通过增量学习,我们不需要将大量数据加载到内存中。对于每次训练迭代,我们只需要加载相应的数据,就可以大大提高系统效率。此外,增量学习可以帮助我们减少训练时间。对于传统的机器学习算法,如果有任何新数据传入,我们需要重新训练我们的模型。但是,就神经网络而言,我们仅需要基于预训练的参数执行几次增量学习迭代,即可显着减少学习时间并节省计算资源。
在MATLAB中,执行增量学习的方式不是那么直观。在本文中,我将介绍一种执行增量学习的简单方法。
首先,我们需要加载实验数据。在本文中,我们将使用身体脂肪数据集作为实验数据。
[X,T] = bodyfat_dataset;
X=X.';
T=T.';
随后,我们应该定义我们的模型。在本文中,我仅使用具有一个隐藏层的神经网络。
%% Create a network
layers = [
featureInputLayer(size(X,2))
fullyConnectedLayer(64)
reluLayer
fullyConnectedLayer(size(T,2))
regressionLayer];
然后,我们可以训练我们的网络。我们只需要将数据和一些超参数传递给训练函数。
%% Training
options = trainingOptions('adam','MaxEpochs',10,'Verbose',true