HDU 3486 RMQ+二分

题意

给一组数,分成M组,每一组的人数为n/m,剩下的人丢弃。每组取最大的数,问要得到严格大于某个数的总和,最少需要分多少组

题解

这种题分组题,很容易便能想到是二分。只是注意一些边界情况就可以了,比如说选取的组位置边界。

注意事项

处理问题不要刻意追求巧妙,选择最稳妥的方式在大多数时候反而会更好。

代码

#include <iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<cmath>
#include<queue>
#include<string>
#include<set>
#include<map>
#include<bitset>
#include<stack>
#include<string>
#define UP(i,l,h) for(int i=l;i<h;i++)
#define DOWN(i,h,l) for(int i=h-1;i>=l;i--)
#define W(a) while(a)
#define MEM(a,b) memset(a,b,sizeof(a))
#define LL long long
#define INF 0x3f3f3f3f
#define MAXN 800010
#define MOD 1000000007
#define EPS 1e-3
using namespace std;

int a[200010];
int d[200010][20];
int n,m;
void rmq_init() {
    UP(i,0,n) {
        d[i][0]=a[i];
    }
    for(int j=1; (1<<j)<=n; j++) {
        for(int i=0; i+(1<<j)-1<n; i++) {
            d[i][j]=max(d[i][j-1],d[i+(1<<(j-1))][j-1]);
        }
    }
}

int rmq(int l,int r) {
    int k=0;
    W((1<<(k+1))<=r-l+1) {
        k++;
    }
    return max(d[l][k],d[r-(1<<k)+1][k]);
}

int main() {
    W(~scanf("%d%d",&n,&m)) {
        if(n<0&&m<0)
            break;
        MEM(d,0);
        MEM(a,0);
        UP(i,0,n) {
            scanf("%d",&a[i]);
        }
        rmq_init();
        int lt=1,rt=n;
        int ans=-1;
        W(lt<=rt) {
            int mid=(lt+rt)/2;
//            cout<<lt<<" "<<rt<<endl;
            int pos=n/mid;
            LL sum=0;
            for(int i=0; i<pos*mid; i+=pos) {
                sum+=rmq(i,i+pos-1);
            }
//            cout<<sum<<" "<<mid<<" "<<pos<<endl;
            if(sum>m) {
                ans=mid;
                rt=mid-1;
            }else{
                lt=mid+1;
            }
        }
        printf("%d\n",ans);
    }
}

/*
3 499
200 200 100
*/
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值