数分教程(史济怀)3ed----1.1

.这一节讲的是实数,以前对自然数,有理数,无理数,实数,复数等概念的认识非常模糊,似乎也不影响你通过记忆的方式做题,然而不是建立在理解基础上的记忆随着时间的推移会变得难以辨认,当时以大量习题为基础应付考试的方式对于思考跟理解没有任何帮助,只是一些解题技巧罢了。理解的数学一定是以掌握最基础的概念开始,熟悉了最基础的概念,才能理解数学的命题到底在表达什么。数学的一大特点是层层递进,上一层的结论是建立在前一层的基础之上,不然也不会有“数学大厦”一说。

然而从自身的学习经历来讲,我们学习很少注重基础,都想办法做难题偏题,以在其他同学面前显示自身的厉害,实则本末倒置,我们学习科学知识不是为了做题,而是为了掌握科学的思维跟方法,让我们在应对未来的面临的问题时知道如何考虑,作出正确的决策。

这一节的实数是建立在最基础的数集概念之上,总觉得我们中文的概念不够直接还是英文的概念比较直接跟确定。以下的数集概念转自

https://www.wtamu.edu/academic/anns/mps/math/mathlab/beg_algebra/beg_alg_tut2_sets.htm

Natural (or Counting) Numbers  自然数
N = {1, 2, 3, 4, 5, ...}
Integers 整数
= {..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...}
Rational Numbers 有理数
Q = { \frac{a}{b} | a and b are integers and b ≠ 0}
Irrational Numbers 无理数
I = {x | is a real number that is not rational}
Real Numbers 实数
R = {x corresponds to point on the number line}

其中对于有理数的概念是最值得注意的,本节对于证明\sqrt{2}是无理数,以及证明:若n\inN,且n不是完全平方数,那么\sqrt{n}是无理数。里面都有无理数的概念。那就需要需要将人类理解的无理数概念转化成数学符号。

数学的发展建立在各种证明之上,那么证明的目的是什么?其实就是通过一系列的没有任何逻辑错误的推导得到某个结论,人类的智力跟科学智慧也就是在这些证明中体现出来的。基于这种没有逻辑错误的结论之上构建的理论才能进一步发展,不然就是构建在一层不坚实的地基之上,这样也就不能成为放诸四海皆准的定理,只能称为猜想,就像著名的费马猜想,直到1994年由怀尔斯证明完成之后才能称为费马大定理,随后才能让建立在这个定理之后的各个推论得以为人所接受,并继续推动数学的发展。

既然是没有逻辑错误,那需要问一句哪些结论是逻辑正确的?书中举了一个例子即三角不等式

\left | x + y \right | \leqslant \left | x \right | + \left | y \right |

证明:\forall x, y\in \mathbb{R} ,我们有

 -\left | x \right |\leqslant x\leqslant \left | x \right |,-\left | y \right |\leqslant y\leqslant \left | y \right |

        把两项不等式相加,得到

-(\left | x \right | + \left | y \right |)\leqslant x + y \leqslant \left | x \right | + \left | y \right |

        该不等式等价于

\left | x + y \right | \leqslant \left | x \right | + \left | y \right |

我们把这个不等式装入我们的数学逻辑知识库中,这是一个逻辑正确的结论,有这个结论就可以将其用到后续的证明中。

接下来是一个正式的证明例题

 证明:若n\in\mathbb{N},  且n不是完全平方数,那么\sqrt{n}是无理数。

该证明题里面有三个数学概念,自然数, 完全平方数, 无理数。因为实数由无理数跟有理数组成,对于无理数并无一个确切的等式定义,那我们先假定 \sqrt{n} 是有理数即 \sqrt{n} =\frac{p}{q},如果这个假设与我们现有的数集的某些概念出现逻辑冲突那么就证明其不是有理数,如果不是有理数,那在实数范围内其必然是无理数。如何寻找这种逻辑冲突呢?接下来只能从n不是完全平方数着手。那首先需要知道完全平方数的定义是什么?

\forall a, b \in \mathbb{Z} , b = a^{2},则b为完全平方数。

\sqrt{n}=\frac{p}{q},等式两边平方,有n=(\frac{p}{q})^{2},由于n \in \mathbb{N} 且 n不是完全平方数,那么可以由完全平方数的定义得知\frac{p}{q} 必定不为整数,用数学符号表示即\frac{p}{q} \notin \mathbb{Z},同时\sqrt{n}在实数范围内必然大于0,即\sqrt{n}> 0,则\frac{p}{q}不是自然数,用数学符号表示为\frac{p}{q}\notin\mathbb{N}。即\exists m \in \mathbb{N}, m < \frac{p}{q} < m + 1,这里面有两种情况即 p,q\in\mathbb{+Z} 或者 p,q\in\mathbb{-Z}。 当p,q\in\mathbb{+Z}时,m< \frac{p}{q}< m+1,不等式左右两边乘以正整数q,符号不变即mq < p < mq + q,不等式两边减去mq得 0<p-mq<q,通过这个不等式再重新构造下\frac{p}{q},\frac{p}{q} = \frac{p1}{p-mq},联立n=(\frac{p}{q})^{2},得到p1 = nq-mp,令q1=p-mq。由不等式0<p-mq<q,得p>p1。且p1,q1\in\mathbb{N}。再令\sqrt{n} = \frac{p1}{q1},重复上述讨论得到

p>p1>p2>p3>... and q>q1>q2>q3>...。 但是正整数不能无穷小下去。对于p,q\in\mathbb{-Z},也可以由同样的方法证明得到,由此证明\sqrt{n}不可能是有理数。 

该证明方法中对于p1 = nq-mp以及q1=p-mq,很多人认为怎么能这么随意的就替代了,其实等式两边看似变量跟长度都不一样,这样替代会感到不妥,其实没有明白像 nq-mp以及p-mq看起来字母很多,也有算式,实际上表达的只是一个数。

书中称这种方法为无穷递降法。个人觉得此方法就是找到可以对于等式进行某个方向的放大或者缩小以致出现某种矛盾。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值