数分教程(史济怀)3ed----1.2

这一节讲的是数列跟收敛数列,最重要的概念是收敛数列,定义如下:

数列极限的定义

定义:设{x_{n}}是一个数列,a是一个实数,如果对于任意给定的\varepsilon>0(不论它多么小),总存在正整数N,使得当n>N时,不等式

\left | x_{n}-a \right | < \varepsilon

都成立,那么就称常数a是数列{x_{n}}的极限,或者称数列{x_{n}}收敛于a,记为

\lim_{n \to \infty }x_{n} = a

x_{n}\rightarrow a(n\to\infty)

我们也说数列{x_{n}收敛于a。存在极限的数列成为收敛数列;不收敛的数列称为发散数列

同时觉得这本数分教程的证明过程思路有点不清晰。还是同济版的《高等数学》关于数列极限的证明更加的清晰明确,可以参考高等数学的证明思路。

现把《高等数学》的一道证明题摘抄如下

例证

\left | q \right |<1, 证明等比数列

1,q,q^{2},q^{3},...,q^{n-1},...

的极限是0.

        证     \forall \epsilon>0,因为

\left | x_{n} - a \right | = \left| q^{n-1} - 0\right| = \left|q\right|^{n-1}

要使得\left|x_{n}-a\right| < \epsilon,只要

\left|q\right|^{n-1} < \epsilon

取自然对数,得(n-1)ln\left|q\right|<ln\epsilon。因为\left|q\right|<1,ln\left|q\right|<0,故

n>1+\frac{ln\epsilon}{ln\left|q\right|}.

取 N=\left [ 1+\frac{ln\epsilon}{ln\left|q\right|} \right ],则当n>N时,就有

\left|q^{n-1}-0\right|<\epsilon

\lim_{n \to \infty}q^{n-1}=0

同时记住数分教程中的三个例题结论

结论一
对于任意的正数\alpha>0,有   \lim_{n \to \infty}\frac{1}{n^{\alpha}} = 0
结论二
\left|q\right|<1时, \lim_{n\to\infty} q^{n} = 0
结论三
\lim_{n\to\infty}n^{\frac{1}{n}} = 1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值