数据范围开小,wa了好几次。。。。bzoj范围开小会wa,我竟然刚知道。。。。
套用在这一类题的方法即可
方法:
我们可以对于消费和盈利的点建立二分图,开始答案为所有的盈利和,(用户收益,和不建中转站的价值)
那么源向消费的点连边,流量为消费值,盈利向汇连边,流量为盈利值
中间盈利对应的消费连边,流量为INF,那么我们求这张图的最小割,用
开始的答案减去最小割就是答案,因为最小割的存在不是左面就是右面,
割左面,代表建这条路,需要对应的消费,那么割右面代表不要这项盈利,
那本来加进去的盈利应该减掉,所以可以这样更新答案。
以后看题要注意数据范围,,以为m是边数,实际上是点数,要仔细仔细再仔细!!!!!
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<cmath>
#include<queue>
#define debug(x) cout<<#x<<"="<<x<<endl
using namespace std;
const int inf=0x3f3f3f3f;
const int N=500009;
struct aa
{
int pre,cap,flow,to;
}edge[500009];
int head[N],tot,cnt[N];
int lev[N];
int n,m,ans,s,t;
void addedge(int x,int y,int z)
{
edge[++tot].cap=z;edge[tot].to=y;edge[tot].pre=head[x];head[x]=tot;
edge[++tot].cap=0;edge[tot].to=x;edge[tot].pre=head[y];head[y]=tot;
}
bool bfs()
{
memset(lev,0,sizeof(lev));
queue<int> q;
lev[s]=1;//remember!!!,要等于一不能是0,因为可能有反向边,然后更改s的level
q.push(s);
while (!q.empty())
{
int u=q.front();q.pop();
for (int i=head[u];i;i=edge[i].pre)
if (!lev[edge[i].to]&&edge[i].cap>edge[i].flow)
{
lev[edge[i].to]=lev[u]+1;
if (edge[i].to==t) return true;
q.push(edge[i].to);
}
}
return false;
}
int dfs(int u,int maxflow)
{
if (u==t||maxflow==0) return maxflow;
int ans=0,&j=cnt[u];//当前弧优化
for (;j;j=edge[j].pre)
if (lev[edge[j].to]==lev[u]+1)
{
int flow=dfs(edge[j].to,min(maxflow,edge[j].cap-edge[j].flow));
if (!flow) continue;
ans+=flow;
edge[j].flow+=flow;
edge[((j-1)^1)+1].flow-=flow;//反向边
maxflow-=flow;
if (maxflow==0) return ans;
}
return ans;
}
int work()
{
int ans=0;
while (bfs())
{
for (int i=1;i<=s;i++) cnt[i]=head[i];
ans+=dfs(s,inf);
}
return ans;
}
int main()
{
scanf("%d%d",&n,&m);
int x,y,z;
s=n+m+2;t=n+m+1;
for (int i=1;i<=n;i++)
{
scanf("%d",&x);
addedge(s,i,x);
}
for (int i=1;i<=m;i++)
{
scanf("%d%d%d",&x,&y,&z);
addedge(x,n+i,inf);
addedge(y,n+i,inf);
addedge(n+i,t,z);
ans+=z;
}
printf("%d",ans-work());
return 0;
}