题面
分析
没想到压轴题是道模板裸题
由于子图的权值=边权和-点权和
将边和点都看成新图中的点
S向原来的边i连边,权值为边权
点i向T连边,权值为点权
边i:(u,v,w)向u,v,连边,权值INF
答案即为总边权-最小割
理论时间复杂度为\(O(n^2m)\),但由于Dinic在随机图上表现很好,可以通过
代码
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define maxn 10005
#define maxm 10005
#define INF 0x3f3f3f3f3f3f3f3f
using namespace std;
int n,m;
struct edge{
int from;
int to;
int next;
long long flow;
}E[maxm<<1];
int sz=1;
int head[maxn];
void add_edge(int u,int v,long long w){
// printf("%d->%d : %d\n",u,v,w);
sz++;
E[sz].from=u;
E[sz].to=v;
E[sz].next=head[u];
E[sz].flow=w;
head[u]=sz;
sz++;
E[sz].from=v;
E[sz].to=u;
E[sz].next=head[v];
E[sz].flow=0;
head[v]=sz;
}
int deep[maxn];
bool bfs(int s,int t){
queue<int>q;
memset(deep,0,sizeof(deep));
q.push(s);
deep[s]=1;
while(!q.empty()){
int x=q.front();
q.pop();
for(int i=head[x];i;i=E[i].next){
int y=E[i].to;
if(E[i].flow&&!deep[y]){
deep[y]=deep[x]+1;
if(y==t) return 1;
q.push(y);
}
}
}
return 0;
}
long long dfs(int x,int t,long long minf){
if(x==t) return minf;
long long k,rest=minf;
for(int i=head[x];i;i=E[i].next){
int y=E[i].to;
if(E[i].flow&&deep[y]==deep[x]+1){
k=dfs(y,t,min(rest,E[i].flow));
if(k==0) deep[y]=0;
E[i].flow-=k;
E[i^1].flow+=k;
rest-=k;
if(rest==0) break;
}
}
return minf-rest;
}
long long dinic(int s,int t){
long long maxflow=0,nowflow=0;
while(bfs(s,t)){
while(nowflow=dfs(s,t,INF)) maxflow+=nowflow;
}
return maxflow;
}
int a[maxn];
int main(){
int u,v,w;
scanf("%d %d",&n,&m);
int s=0,t=n+m+1;
for(int i=1;i<=n;i++){
scanf("%d",&a[i]);
add_edge(i,t,a[i]);
}
long long sum=0;
for(int i=1;i<=m;i++){
scanf("%d %d %d",&u,&v,&w);
sum+=w;
add_edge(s,i+n,w);
add_edge(i+n,u,INF);
add_edge(i+n,v,INF);
}
printf("%I64d\n",sum-dinic(s,t));
}