P1209 [USACO1.3] 修理牛棚 Barn Repair

文章讲述了如何在资源有限的情况下,通过算法优化,计算在给定牛棚数量、木板数量和牛的位置后,需要的最小木板总长度。作者给出了一个C++代码示例,利用排序和合并策略来解决这个问题,时间复杂度为O(n)。
摘要由CSDN通过智能技术生成

题目描述

在一个月黑风高的暴风雨夜,Farmer John 的牛棚的屋顶、门被吹飞了 好在许多牛正在度假,所以牛棚没有住满。

牛棚一个紧挨着另一个被排成一行,牛就住在里面过夜。有些牛棚里有牛,有些没有。 所有的牛棚有相同的宽度。

自门遗失以后,Farmer John 必须尽快在牛棚之前竖立起新的木板。他的新木材供应商将会供应他任何他想要的长度,但是吝啬的供应商只能提供有限数目的木板。 Farmer John 想将他购买的木板总长度减到最少。

给出m,s,c,表示木板最大的数目、牛棚的总数、牛的总数;以及每头牛所在牛棚的编号,请算出拦住所有有牛的牛棚所需木板的最小总长度。

输入格式

一行三个整数 m,s,c,意义如题目描述。
接下来 c 行,每行包含一个整数,表示牛所占的牛棚的编号。

输出格式

输出一行一个整数,表示所需木板的最小总长度。

输入输出样例

输入 #1复制

4 50 18
3 
4 
6 
8 
14
15 
16 
17 
21
25 
26 
27 
30 
31 
40 
41 
42 
43

输出 #1复制

25

解析:

当牛棚数小于木板数,直接一个牛棚一个;

当牛棚数大于木板数,我们需要把断距离的合并在一起。

这时我们可以排序两个牛棚的距离数。

收取c-m个牛棚合在一起。 省下的就是 m个木板了。

代码:

#include<bits/stdc++.h>
using namespace std;
int main(){
	int m,s,c;
	cin >> m >> s>>c;
	vector<int> a(c);
	for(int i = 0;i < c;i++)
	{
		cin>>a[i];
	} 
	if(c <= m){
		cout << c <<endl;
		return 0;
	}
	vector<int> d(c);
	sort(a.begin(),a.end());
	for(int i = 1;i < c;i++){
		d[i] = a[i] - a[i-1] - 1; 
	}
	int ans = c;
	sort(d.begin()+1,d.end());
	
	for(int i = 1;i <= c-m;i++)
	{
		ans += d[i];
	}
	cout << ans<<endl;
	return 0;
} 

时间复杂度为:O(n);

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值