algorithm
文章平均质量分 63
zhi_jian
这个作者很懒,什么都没留下…
展开
-
Fibonacci 数列通项公式推导
今天偶然又遇到了Fibonacci数列,便想知道这个通项公式怎么求,处于习惯的原因.顺手google了一下"Fibonacci 通项公式推导"...随便点了一个,说"若采用初等方式推导,即两次构造等比数列".看到 F(n) = F(n-1) + F(n-2)的通项公式,我瞬间想起来,这类通项公式的推导[恩师]---雷刚---曾经教过,简简单单不需要两次构造等比数列,一次就行了。特贴出推导过程,原创 2013-08-27 23:01:43 · 2360 阅读 · 0 评论 -
FFT c++语言实现
/* * test.cpp * * Created on: 2013-8-18 * Author: zhijian */#include #include #define N 128 //N 点#define RATE 128 //抽样频率#define LEN 7 //1#define PI 3.14159265原创 2013-08-19 15:29:04 · 3078 阅读 · 0 评论 -
DFT 频谱分析原理
/* * test2.cpp * * Created on: 2013年8月12日 * Author: zhijian */#include #include #define RATE 20 //采样频率#define N 20 //采样点数#define PI 3.1415926535double src[N]; /原创 2013-08-12 11:13:13 · 4366 阅读 · 0 评论 -
一类void 递归函数的非递归实现
对于如下类型的void型递归函数:(主要特征是递归调用的地方上下文无关) void Fun(type a1,type a2......) {//0号程序段-起//0号程序段-止 Fun(b1,b2,.....);//1号程序段-起 -----注意0,1,...号程序段之间并无原创 2013-10-25 23:10:07 · 2712 阅读 · 0 评论 -
mingw编译ltp(undefined reference to WSAStartup@8)
编译环境:CMake+mingw321、使用CMake生成makefile文件2、使用mingw32编译生成include文件夹和lib文件夹3、使用mingw32编译example 出现"undefined reference to WSAStartup@8"的错误原来mingw默认没有包含windows库,需要在链接的地方添加-lwsock32。原创 2013-11-09 10:36:42 · 1179 阅读 · 0 评论 -
动态规划与部分枚举
枚举:在寻求最优解的时候,最简单的方法便是"枚举"。可别小看了枚举这简单的思路,凡是优秀、高效的程序大多有及其简单的原理。1、最大子序列和问题:一串数字序列:1,-1,2,4,-3,6,8,求最大和的连续子序列。枚举所有的子序列:起点为i,结束为j,稍作优化:时间复杂度为O(n^2);2、遥远的银河(问题源:la3695)给出平面上n个点,找出一个矩阵,使得边界上包含尽原创 2013-10-08 16:10:19 · 1171 阅读 · 0 评论 -
Dijkstra 证明
正如uva136题目(题目大意:所有只由2,3,5因子的乘积的数按小到大排列:1 2 3 4 5 6 8 9......,求第1500个数的大小)一样[1][2][3][4][5][6][8],第8个数肯定是由前面7个数中的某一个*2或*3或*5得到的,即为:5*2或3*3或2*5之一。Dijkstra同样如此,不仅由于最短路径本身就具有最优子结构(最短路径中的一段路径一定是最短的),而且原创 2013-10-06 11:27:39 · 1338 阅读 · 0 评论 -
uva1388 Graveyard
1、证明最优情况下,必定有一个雕塑没有移动。 考虑有一个雕塑没有移动的情况:红色的圆点代表n个之前就存在的雕塑,紫色的代表添加m个之后所有的雕塑的位置。由于整个图形是圆形,所以具有很强的对称性质:离2号和4号最近的点是对称的、离1号和5号最近的点是对称的。现在将3号向右移动一点距离x,则3号左右的点的情况是完全相反的----若2号离他最近的点的距离增大,则4号就要原创 2013-08-29 16:15:11 · 808 阅读 · 0 评论 -
二元一次不定方程
一、假设(x0,y0)为a*x + b*y = c (a,b,c,x,y为整数,a、b互质)的一组解,证明该不等式的通解为:(x0 + k*b,y0 - k*a);证明:1、首先将(x0 + k*b,y0 - k*a)带入原方程,使得方程成立,说明这些解为原方程的解。2、假设除了这些解之外还存在至少一个解(x1,y1),这个点坐落在(x0+k1*b,y0-k1*a)和(x0+(k1+原创 2013-08-28 22:59:05 · 2029 阅读 · 0 评论 -
高斯列主元消元法求解线性方程组
一、高斯消去法的基本思想 例1. 解方程组: 解 方程组矩阵形式为:AX=b,其中: 第一步,消元过程:对增广矩阵进行消元 即得方程组 第二步, 回代过程: 此方法就是高斯消去法。二、改进版原创 2014-01-05 23:35:26 · 15157 阅读 · 2 评论