Day31_贪心算法
1. 贪心算法理论基础
通过局部最优,推出整体最优。
1. 分发饼干
455. 分发饼干
思路
- 将孩子的胃口和饼干的大小升序排序
- 从最小胃口的孩子开始,找能满足他胃口的最小的饼干
- 重复至每个孩子都有饼干吃,或者没有饼干能满足剩下的孩子,则分配结束
class Solution {
public:
int findContentChildren(vector<int>& g, vector<int>& s) {
int g_len = g.size();
int s_len = s.size();
sort(g.begin(), g.end());
sort(s.begin(), s.end());
int i = 0, j = 0, cnt = 0;
while (i < g_len && j < s_len) {
if (g[i] <= s[j]) {
i++;
j++;
cnt++;
} else {
j++;
}
}
return cnt;
}
};
还可以反过来想,用最大的食物满足胃口最大的孩子。
3. 摆动序列
计算出现拐点的地方,开始一个数就记为1,之后每出现一个拐点,就将将答案+1
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
int nums_size = nums.size();
if (nums_size <= 1) return nums_size;
int pre_diff = 0, cur_diff = 0;
int cnt = 1;
for (int i = 0; i < nums_size - 1; ++i) {
cur_diff = nums[i + 1] - nums[i];
// 当前差值和前一个差值异号,或者一开始由平缓趋于变化,说明出现了拐点
if ((cur_diff > 0 && pre_diff <= 0) || cur_diff < 0 && pre_diff >= 0) {
pre_diff = cur_diff;
cnt++;
}
}
return cnt;
}
};
4. 最大子数组和
贪心的对数组依次求和,不断更新答案为和的最大值。当出现和小于0的情况时,对下一个数字来说,重新开始求和,得到的和更大,所以遇到连续和小于0时。丢弃该连续区间,重新选择区间求和。
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int nums_size = nums.size();
int sum = 0;
int max_ans = nums[0];
for (int i = 0; i < nums_size; ++i) {
if (sum + nums[i] < 0) { // 如果当前的连续和小于0,则从下一个元素开始重新求和
max_ans = max(max_ans, nums[i]); // 更新答案
sum = 0;
continue;
}
sum += nums[i];
max_ans = max(max_ans, sum); // 更新答案
}
return max_ans;
}
};