随想录一刷Day39——动态规划

Day39_动态规划

6. 不同路径

62. 不同路径
思路:

  1. dp[i][j]表示从 (0, 0)(i, j) 的方式有 dp[i][j]
  2. 递推公式:dp[i][j] = dp[i - 1][j] + dp[i][j - 1]每个位置可以由其上面一个位置或者左边一个位置转移过来
  3. 初始化:由于第一行的所有位置只能从左边到达,所以第一行的所有位置只有一种方法可以到达,第一列同理;所以初始化第一行和第一列为 1
  4. 遍历顺序:每个位置由其左边和上面的位置转移而来,所以要先计算左边和上面,再计算右下的部分,所以从左上角开始,逐层遍历二维数组即可。

方法一:
时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( n 2 ) O(n^2) O(n2)

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<vector<int>> dp(m, vector<int>(n, 0));
        for (int i = 0; i < m; ++i) dp[i][0] = 1; // 第一行初始化为 1
        for (int j = 1; j < n; ++j) dp[0][j] = 1; // 第一列初始化为 1

        for (int i = 1; i < m; ++i) {
            for (int j = 1; j < n; ++j) {
                dp[i][j] = dp[i - 1][j] + dp[i][j - 1];
            }
        }
        return dp[m - 1][n - 1];
    }
};

方法二:
时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( n ) O(n) O(n)

class Solution {
public:
    int uniquePaths(int m, int n) {
        vector<int> dp(n, 0); // 只开一行数组
        for (int j = 0; j < n; ++j) dp[j] = 1; // 将第一行初始化为 1
        for (int i = 1; i < m; ++i) { // 除了第一行和第一列遍历剩下部分
            for (int j = 1; j < n; ++j) { // 一行一行处理
                dp[j] += dp[j - 1]; // 当前一维数组表示的就上上一行的方法数,加上左边的方法数,就是从起点到达自己的方法数
            }
        }
        return dp[n - 1];
    }
};

7. 不同路径 II

63. 不同路径 II
思路:

  1. dp[i][j]表示从 (0, 0)(i, j) 的方式有 dp[i][j]
  2. 递推公式:dp[i][j] = dp[i - 1][j] + dp[i][j - 1]每个位置可以由其上面一个位置或者左边一个位置转移过来
  3. 初始化:由于第一行的所有位置只能从左边到达,所以第一行的所有位置只有一种方法可以到达,第一列同理;所以初始化第一行和第一列为 1,但是遇到障碍物的话,第一行右边位置将无法到达,第一列下面的位置将无法到达
  4. 遍历顺序:还是从左上到右下逐层遍历,但是遇到障碍物要跳过

方法一:
时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( n 2 ) O(n^2) O(n2)

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int grid_m = obstacleGrid.size();
        int grid_n = obstacleGrid[0].size();
        if (obstacleGrid[0][0] || obstacleGrid[grid_m - 1][grid_n - 1]) return 0; // 起点或终点有障碍物,无法到达

        // 初始化
        vector<vector<int>> dp(grid_m, vector<int>(grid_n, 0));
        for (int j = 0; j < grid_n; ++j) { // 初始化第一行为 1
            if (obstacleGrid[0][j]) break; // 遇到障碍物,之后的位置都不可达
            dp[0][j] = 1;
        }
        for (int i = 1; i < grid_m; ++i) { // 初始化第一列为 1
            if (obstacleGrid[i][0]) break; // 遇到障碍物,之后的位置都不可达
            dp[i][0] = 1;
        }

        // 递归方程
        for (int i = 1; i < grid_m; ++i) {
            for (int j = 1; j < grid_n; ++j) {
                if (obstacleGrid[i][j]) continue;
                dp[i][j] = dp[i][j - 1] + dp[i - 1][j];
            }
        }

        return dp[grid_m - 1][grid_n - 1];
    }
};

方法二:
时间复杂度: O ( n 2 ) O(n^2) O(n2)
空间复杂度: O ( n ) O(n) O(n)

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int grid_m = obstacleGrid.size();
        int grid_n = obstacleGrid[0].size();
        if (obstacleGrid[0][0] || obstacleGrid[grid_m - 1][grid_n - 1]) return 0; // 起点或终点有障碍物,无法到达

        // 初始化
        vector<int> dp(grid_n, 0);
        for (int j = 0; j < grid_n; ++j) { // 初始化第一行为 1
            if (obstacleGrid[0][j]) break; // 遇到障碍物,之后的位置都不可达
            dp[j] = 1;
        }

        // 递归方程
        for (int i = 1; i < grid_m; ++i) {
            for (int j = 0; j < grid_n; ++j) {
                if (obstacleGrid[i][j]) { // 遇到障碍物,把当前位置置为不可达,即下一行的上一个位置不可达
                    dp[j] = 0;
                    continue;
                }
                if (j == 0) continue; // 防止访问非法地址
                dp[j] += dp[j - 1];
            }
        }

        return dp[grid_n - 1];
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值