Machine Learning
Marho11
这个作者很懒,什么都没留下…
展开
-
机器学习三要素:模型、策略与算法
模型:就是用来描述客观世界的数学模型,如lr的sigmoid函数。策略:从假设空间中挑选出参数最优模型的准则。经验风险最小化作为常用的标准,是一个参数优化的过程,这就需要构造一个损失函数来描述经验风险。如交叉熵损失函数。算法:优化模型参数的方法,即最小化损失函数的算法。如梯度下降。...原创 2020-07-29 18:14:57 · 359 阅读 · 0 评论 -
偏差和方差的区别
偏差:描述的是预测值(估计值)的期望与真实值之间的差距。偏差越大,越偏离真实数据,如下图第二行所示。方差:描述的是预测值的变化范围,离散程度,也就是离其期望值的距离。方差越大,数据的分布越分散,如下图右列所示。原创 2016-01-22 17:04:52 · 2252 阅读 · 0 评论 -
朴素贝叶斯分类及两个模型
在文本分类中,假设我们有一个文档d∈X,X是文档向量空间(document space),和一个固定的类集合C={c1,c2,…,cj},类别又称为标签。显然,文档向量空间是一个高维度空间。我们把一堆打了标签的文档集合作为训练样本,∈X×C。例如:={Beijing joins the World Trade Organization, China}对于这个只有一句话的文档,我们把转载 2016-04-03 21:14:04 · 5451 阅读 · 2 评论 -
正态分布(Normal distribution)又名高斯分布(Gaussian distribution)
转自:http://blog.csdn.net/rns521/article/details/6953591正态分布(Normal distribution)又名高斯分布(Gaussian distribution),是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。若随机变量X服从一个数学期望为μ、标准方差为σ2的高斯分布,记为:X∼转载 2017-01-03 17:34:59 · 19968 阅读 · 1 评论 -
极大似然原理
参考资料转载 2017-01-06 13:57:06 · 717 阅读 · 0 评论 -
最大似然估计总结笔记
http://blog.csdn.net/yanqingan/article/details/6125812转载 2017-02-17 14:00:46 · 688 阅读 · 0 评论 -
ROC和AUC介绍
最近看到关于ROC和AUC介绍及一篇好博客,转载一下,便于回顾。ROC(Receiver Operating Characteristic)曲线和AUC常被用来评价一个二值分类器(binary classifier)的优劣,这篇博文简单介绍ROC和AUC的特点,以及更为深入地,讨论如何作出ROC曲线图以及计算AUC。# ROC曲线需要提前说明的是,我们这里只讨论二值分类器。对于分类转载 2016-04-16 11:14:14 · 1788 阅读 · 1 评论 -
机器学习中正则化项L1和L2的直观理解
https://blog.csdn.net/jinping_shi/article/details/52433975转载 2018-10-09 14:28:15 · 257 阅读 · 0 评论 -
机器学习算法:逻辑回归
1、总述逻辑回归是应用非常广泛的一个分类机器学习算法,它将数据拟合到一个logit函数(或者叫做logistic函数)中,从而能够完成对事件发生的概率进行预测。2、由来要说逻辑回归,我们得追溯到线性回归,想必大家对线性回归都有一定的了解,即对于多维空间中存在的样本点,我们用特征的线性组合去拟合空间中点的分布和轨迹。如下图所示:转载 2015-11-09 23:06:29 · 895 阅读 · 0 评论 -
KMeans算法的K值以及初始类簇中心点的选取
KMeans算法是最常用的聚类算法,主要思想是:在给定K值和K个初始类簇中心点的情况下,把每个点(亦即数据记录)分到离其最近的类簇中心点所代表的类簇中,所有点分配完毕之后,根据一个类簇内的所有点重新计算该类簇的中心点(取平均值),然后再迭代的进行分配点和更新类簇中心点的步骤,直至类簇中心点的变化很小,或者达到指定的迭代次数。 KMeans算法本身思想比较简单,但是合理的确定K值和K个初始类簇转载 2015-09-22 09:16:22 · 45603 阅读 · 1 评论 -
最小二乘法和最大似然估计
一:背景:当给出我们一些样本点,我们可以用一条直接对其进行拟合,如y= a0+a1x1+a2x2,公式中y是样本的标签,{x1,x2,x3}是特征,当我们给定特征的大小,让你预测标签,此时我们就需要事先知道参数{a1,a2}。而最小二乘法和最大似然估计就是根据一些给定样本(包括标签值)去对参数进行估计参数估计的方法>。一般用于线性回归中进行参数估计通过求导求极值得到参数进行拟合,当然也可以用牛顿法转载 2015-10-07 16:18:02 · 1897 阅读 · 0 评论 -
Apriori算法的java实现
介绍Apriori算法是一个经典的数据挖掘算法,Apriori的单词的意思是"先验的",说明这个算法是具有先验性质的,就是说要通过上一次的结果推导出下一次的结果,这个如何体现将会在下面的分析中会慢慢的体现出来。Apriori算法的用处是挖掘频繁项集的,频繁项集粗俗的理解就是找出经常出现的组合,然后根据这些组合最终推出我们的关联规则。Apriori算法原理Apriori算法是一种逐层搜索原创 2015-08-28 09:59:15 · 2614 阅读 · 0 评论 -
随机森林算法
随机森林顾名思义,是用随机的方式建立一个森林,森林里面有很多的决策树组成,随机森林的每一棵决策树之间是没有关联的。在得到森林之后,当有一个新的输 入样本进入的时候,就让森林中的每一棵决策树分别进行一下判断,看看这个样本应该属于哪一类(对于分类算法),然后看看哪一类被选择最多,就预测这个样本 为那一类。在建立每一棵决策树的过程中,有两点需要注意 - 采样与完全分裂。首先是两个随机采样的过程,ra转载 2015-09-10 15:41:34 · 1338 阅读 · 0 评论 -
线性回归与梯度下降算法
仍然是以房价与房屋面积的例子引出线性回归问题的解答。首先定义一些符号:m:训练数据的大小x:输入变量,是向量y:输出变量,是实数(x,y):一个训练实例:第i 个训练实例,i 是上标而不是指数在这里,为了方便说明,又添加了一个变量,问题变为房屋面积和卧室数目与房屋价格的关系。如果假设训练集中的数据使用线性回归解决的话,假设拟合函数如下:其中x转载 2015-09-11 23:13:15 · 826 阅读 · 0 评论 -
逻辑斯蒂回归与梯度下降算法
Logistic回归属于分类模型。回顾线性回归,输出的是连续的实数,而Logistic回归输出的是[0,1]区间的概率值,通过概率值来判断因变量应该是1还是0。因此,虽然名字中带着“回归”(输出范围常为连续实数),但Logistic回归属于分类模型(输出范围为一组离散值构成的集合)。整体步骤假如我们的自变量是“数学课和英语课的成绩”,x={x1,x2},因变量是“能否被哥大录取”,y∈{0转载 2015-09-11 23:34:03 · 5279 阅读 · 0 评论 -
最优化问题中,牛顿法为什么比梯度下降法求解需要的迭代次数更少?
牛顿法是二阶收敛,梯度下降是一阶收敛,所以牛顿法就更快。如果更通俗地说的话,比如你想找一条最短的路径走到一个盆地的最底部,梯度下降法每次只从你当前所处位置选一个坡度最大的方向走一步,牛顿法在选择方向时,不仅会考虑坡度是否够大,还会考虑你走了一步之后,坡度是否会变得更大。所以,可以说牛顿法比梯度下降法看得更远一点,能更快地走到最底部。 根据wiki上的解释,从几何上说,牛顿法就是转载 2015-09-11 23:37:34 · 1839 阅读 · 0 评论 -
logistic回归
1:简单概念描述假设现在有一些数据点,我们用一条直线对这些点进行拟合(该线称为最佳拟合直线),这个拟合过程就称为回归。训练分类器就是为了寻找最佳拟合参数,使用的是最优化算法。这就是简单的线性回归问题,可以通过最小二乘法求解其参数,最小二乘法和最大似然估计见:http://blog.csdn.net/zhihaoma/article/details/48949671转载 2015-10-07 16:30:08 · 714 阅读 · 0 评论 -
最小二乘法
百度百科的介绍:最小二乘法(又称最小平方法)是一种数学优化技术。它通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。最小二乘法还可用于曲线拟合。其他一些优化问题也可通过最小化能量或最大化熵用最小二乘法来表达。 通过这段描述可以看出来,最小二乘法也是一种优化方法,求得目标函数的最优值。并且也可以用于转载 2015-10-07 16:34:03 · 552 阅读 · 0 评论 -
多路数组聚集(Multiway)
多路数组聚集其实就是对维度(dimension)进行选择,保留一些常用的可以很方便地生成别的子立方体的立方体(cube)。对一个维做聚集(aggregation)其实就是按照这个维度的方向做加法,把这个维度的值缩减成一个。比如3D的按照某一维降成2D,最终降成0D的也就是数多维数组里面非零元素的个数了(假设数组元素是0-1)。 当把多维数组文件分割成可以放进内存的块(chuck)时,我们转载 2015-06-07 22:45:56 · 1582 阅读 · 0 评论