本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。
系统程序文件列表
开题报告内容
研究背景
随着互联网技术的飞速发展,新闻信息呈现出爆炸式增长态势,用户面对海量新闻数据往往感到无所适从,难以快速准确地获取自己感兴趣的内容。传统的新闻浏览方式已难以满足个性化、高效化的信息获取需求。因此,智能新闻推荐系统应运而生,它利用大数据、机器学习等先进技术,通过分析用户的浏览历史、兴趣偏好及新闻内容特征,实现新闻信息的精准推送,为用户打造个性化的新闻阅读体验。这一背景下,研究并开发一套高效、智能的新闻推荐系统,对于提升用户体验、促进新闻内容的精准传播具有重要意义。
研究意义
智能新闻推荐系统的研究意义在于,它不仅能够解决用户在海量新闻中筛选信息的难题,提高信息获取的效率和质量,还能够促进新闻内容的多样化传播,增强新闻媒体的竞争力。通过精准推荐,系统能够引导用户发现潜在的兴趣点,拓宽视野,促进知识的传播与交流。同时,对于新闻平台而言,智能推荐系统能够提升用户粘性,增加用户活跃度,为平台带来更高的商业价值。此外,该系统还具有一定的社会意义,通过优化新闻分发机制,有助于构建更加健康、积极的网络舆论环境。
研究目的
本研究旨在设计并实现一套基于大数据和机器学习技术的智能新闻推荐系统,该系统能够全面收集并分析用户行为数据、新闻内容特征等多维度信息,构建用户兴趣模型,实现新闻内容的个性化推荐。具体目的包括:一是提升新闻推荐的准确性和时效性,确保用户能够及时获取到感兴趣且有价值的新闻信息;二是优化用户体验,通过界面友好、操作便捷的系统设计,