基于django+vue+Vue的校园二手市场交易平台【开题报告+程序+论文】-计算机毕设

本系统(程序+源码+数据库+调试部署+开发环境)带论文文档1万字以上,文末可获取,系统界面在最后面。

系统程序文件列表

开题报告内容

研究背景

随着高等教育的普及和校园生活的丰富多彩,大学生们在日常学习和生活中产生了大量的闲置物品。这些物品对于个人而言可能已失去使用价值,但对于其他学生而言却可能具有实际需求。然而,传统的二手物品交易方式,如校园公告板、社交媒体群组等,存在信息分散、交易效率低、信任机制不健全等问题。因此,构建一个校园二手市场交易平台,旨在通过线上化、规范化的方式,促进校园内二手物品的流通与再利用,不仅能够有效解决资源浪费问题,还能增强校园内部的互动与交流。

研究意义

本研究的意义在于,通过开发校园二手市场交易平台,不仅能够为大学生提供一个便捷、高效的二手物品交易渠道,还能培养他们的环保意识、节约意识和理财能力。此外,该平台的建立有助于优化校园资源配置,减少不必要的开支,促进校园经济的健康发展。同时,通过平台的运营与管理,可以探索出一套适用于校园环境的二手市场交易规则和信任机制,为其他类似平台的开发提供借鉴与参考。

研究目的

本研究旨在设计并实现一个功能完善的校园二手市场交易平台,以满足大学生对二手物品交易的需求。通过该平台,学生用户可以方便地浏览、搜索、发布和购买各类二手商品,同时享受在线咨询、商品分类、大学筛选等便捷服务。研究旨在通过技术手段提升交易效率,保障交易安全,促进校园二手市场的繁荣与发展。

研究内容

本研究将围绕校园二手市场交易平台的系统功能展开,具体包括学生用户管理、大学信息展示、商品分类与搜索、商品信息发布与展示、在线咨询与交流等核心模块。在学生用户管理方面,将实现用户注册、登录、个人信息管理等功能;在大学信息展示方面,将整合各大学的基本信息,方便用户按学校筛选商品;在商品分类与搜索方面,将建立科学的商品分类体系,提供关键词搜索、价格筛选等便捷功能;在商品信息发布与展示方面,将支持用户上传商品图片、描述信息、价格等,形成丰富的商品库;在在线咨询与交流方面,将提供即时聊天、留言回复等沟通方式,增强用户间的互动与信任。通过这些功能的实现,构建一个功能全面、操作简便、安全可靠的校园二手市场交易平台。

拟解决的主要问题

本研究拟解决的主要问题包括:如何构建一个用户友好、功能完善的校园二手市场交易平台;如何确保平台上的交易安全,建立有效的信任机制;如何优化商品搜索与推荐算法,提高交易效率;如何维护平台的稳定运行,提供及时的技术支持与服务。

研究方案

本研究将采用以下方案进行:首先,通过文献调研和需求分析,明确平台的功能需求与设计目标;其次,采用面向对象的设计方法,设计平台的系统架构与数据库结构;然后,利用Java等编程语言,结合Spring Boot等框架,实现平台的各项功能;接着,进行系统的测试与优化,确保平台的稳定性与安全性;最后,通过用户反馈与数据分析,不断完善平台的功能与用户体验。

预期成果

预期成果包括:一个功能全面、操作简便、安全可靠的校园二手市场交易平台;一套适用于校园环境的二手市场交易规则和信任机制;一份详细的系统设计文档与实现代码;以及一篇关于校园二手市场交易平台设计与实现的毕业论文。这些成果将为大学生提供一个便捷、高效的二手物品交易渠道,同时推动校园经济的健康发展。

进度安排:

第一阶段:2023年1月11日-2024年3月9日,查阅文献资料,完成开题报告;

第二阶段:2024年3月10日-2024年3月31日,完成概要设计和详细设计;

第三阶段:2024年4月1日-2024年4月30日,编制软件;

第四阶段:2024年5月1日-2024年5月20日,测试各功能模块以及系统测试;

第五阶段:2024年5月21日-2024年6月1日,撰写论文。

参考文献:

[1]   张珩. "Python的计算机软件应用技术探讨"[J]. 电脑知识与技术, 2020, 16(32): 96-97+102.

[2]   毕森, 杨昱昺. "基于python的网络爬虫技术研究"[J]. 数字通信世界, 2019, No.180(12): 107-108.

[3]   李永刚. "基于Python的计算机软件应用技术研究"[J]. 无线互联科技, 2021, 18(11): 36-37.

[4]   李培. "基于Python的网络爬虫与反爬虫技术研究"[J]. 计算机与数字工程, 2019, 47(06): 1415-1420+1496.

[5]   陈佳佳, 邱晓荣, 熊宇昊, 段莉华. "基于Python的人脸识别技术研究"[J]. 电脑知识与技术, 2023, 19 (08): 34-36+39.

[6]   Fabian Pedregosa, G. Varoquaux et al. "Scikit-learn: Machine Learning in Python." Journal of machine learning research(2011).

[7]   韩文煜. "基于python数据分析技术的数据整理与分析研究"[J]. 科技创新与应用, 2020, No.296(04): 157-158.

[8]   Ankush Joshi and Haripriya Tiwari. "An Overview of Python Libraries for Data Science." Journal of Engineering Technology and Applied Physics (2023).

[9]   陈乐. "基于Python的网络爬虫技术"[J]. 电子世界, 2018, No.550(16): 163+165.

[10] 欧阳元东. "基于Python的网站数据爬取与分析的技术实现策略"[J]. 电脑知识与技术, 2020, 16(13): 262-263.

[11] Guttu Sai Abhishek, Harshad Ingole et al. "SPEAR: Semi-supervised Data Programming in Python." Conference on Empirical Methods in Natural Language Processing (2021).

[12] Roseline Bilina and S. Lawford. "Python for Unified Research in Econometrics and Statistics." (2009). 558 591.

[13] 张华, 翟新军, 胥勇, 李伟强, 杨健, 赵嘉伟, 张涛. "Python在集控大数据应用的研究"[J]. 价值工程, 2023, 42 (21): 84-86.

[14] 毛娟. "Python中利用xlwings库实现Excel数据合并"[J]. 电脑编程技巧与维护, 2023, (09): 61-62+134.

以上是开题是根据本选题撰写,是项目程序开发之前开题报告内容,后期程序可能存在大改动。最终成品以下面运行环境+技术栈+界面为准,可以酌情参考使用开题的内容。要源码请在文末进行获取!!

系统技术栈:

前端:Vue.jsHTMLCSSJavaScript后端技术栈

后端:Python 3.7.7Django MySQL5.7

开发工具:PyCharm社区版、Navicat 11以上版本

系统开发流程:

•   使用HTML、CSS和JavaScript结合Vue.js构建前端界面。

•   使用Python语言结合Django框架开发RESTful API。

•   利用MySQL数据库进行数据存储和查询。

•   通过PyCharm IDE进行代码编写、调试和项目管理。

毕设使用者指南

系统概览

本系统是一个基于现代Web技术构建的应用程序,旨在为用户提供一个交互性强、响应快速的用户体验。系统前端采用Vue.js框架,后端使用Python语言结合Django框架,并以MySQL作为数据存储解决方案。

前端使用指南

1.界面导航

  • 主页:展示系统的主要功能和概览信息。
  • 功能页面:根据需要,用户可以访问不同的功能页面,如用户管理、数据分析等。

2. 交互操作

  • 使用HTMLCSS构建的界面元素,如按钮、链接、表单等,用户可以点击或输入信息进行操作。
  • 利用JavaScriptVue.js实现的动态功能,如实时数据更新、表单验证等,增强用户交互体验。

后端服务指南

1. API使用

  • 系统后端提供RESTful API,用户可以通过HTTP请求与系统进行数据交互。
  • 常见的API操作包括GET(获取数据)、POST(提交数据)、PUT(更新数据)和DELETE(删除数据)。

2. 数据管理

  • 利用MySQL数据库,系统能够安全、高效地存储和管理用户数据。
  • 用户可以通过系统界面或API访问数据库中的数据。

程序界面:

源码、数据库获取↓↓↓↓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值