一元积分学概念与性质

目录

思维导图:

不定积分

不定积分的概念

不定积分的存在定理

小结

定积分

概念和性质

定积分的存在定理

定积分的性质

变限积分

概念与性质

反常积分

概念与性质

敛散性判别法

小结


思维导图:

不定积分

不定积分的概念

注:

  • 当遇到一些比较复杂的具体的函数,而且区间内存在振荡间断点的函数f(x)时,通过先求出他的原函数F(x),然后通过求导F(x),若得出是f(x),且在一些需要处理的点处,仍然可以得出F'(x_{0}) = f(x_{0}),那么F(x)就是f(x)原函数,也就是说存在不定积分
  • F'(x) = f(x)得出,若f(x)处处有定义,则F(x)处处可导 \Rightarrow  F(x)处处连续
  • F'(x) = f(x)得出,若F(x)处处可导,且F(x)的导数值刚刚好等于f(x)函数值,则f(x)处处有定义

不定积分的存在定理

(1)连续函数f(x)必有原函数F(x)

(2)含第一类间断点和无穷间断点的函数f(x)在包含该间断点的区间内必没有原函数F(x),但若f(x)在包含振荡间断点区间内不确定是否有原函数F(x)

下面时对第一条定理的证明:

注:一旦f(x)连续就会有下面的式子成立:

                                 1.\int f(x)dx = \int_{a}^{x}f(t)dt +C         这个式子是不定积分与定积分的一个桥梁,但是实际上不定积分与定积分没有任何关系

                                 2.[\int_{a}^{x}f(t)dt]' = f(x)    即不定积分的导数就是f(x)

对于第二条定理的证明:

  通过研究f(x)具备什么性质,从而推断第二条定理中第一类间断点的函数f(x)在包含该间断点的区间内必没有原函数F(x)正确性

、上面的b的结论在几何上说明了在x_{0}点处,说明在x_{0}处附近点的斜率就是在x_{0}处导函数值

上面的介值性比较宽泛的定义:介值性是一个更弱的全局性质。它只要求函数在某个区间内“覆盖”所有中间值,而不要求函数在每个点都连续。因此,连续性足以保证介值性,但介值性不需要连续性。

而如果导数存在的话,那么根据导数定义和洛必达法则可以得出在x_{0}处附近的点x的极限也是导数f'(x_{0})的值,说明这其中是没有突变,而是平滑度过,所以肯定会有介值性。

也就是说首先:导数不能有“跳跃”间断,因为根据导数的定义,如果导数在某点存在,它必须满足某种“平滑”过渡。因此,即使导数不连续,它仍然必须通过所有中间值。

另一个角度证明第一类间断点的以及无穷间断点函数f(x)在包含该间断点的区间内必没有原函数F(x)正确性

证明振荡间断点函数f(x)在包含该间断点的区间内不确定原函数F(x)正确性

由上面的例子说明:对于某些振荡间断点来说,其实是将在无穷区间内的无穷延伸,但是振荡间断点则是在有限区间内进行无穷延伸。

小结

  1. 如果f'(x)存在,当导函数在一点的极限存在时,导函数在这一点必定是连续的。
  2. 如果导函数在这一点存在,则这一点一定不会是导函数的第一类间断点
  3. 在一条处处有切线的曲线上,不会发生切线斜率值在一点突变的情况(因为介值性)
  4. f(x)可导,则f'(x)可能是连续,也可能是振荡间断点。

上面的第四,可以详细写成:

若函数  f(x)在某个区间上可导,则其导函数f'(x)满足介值性(达布性质)。此时:

  • f'(x)可能连续(例如 f(x)=x2f(x)=x2,其导函数 f′(x)=2xf′(x)=2x 连续)。

  • f'(x)也可能不连续,但此时的不连续只能是振荡型间断点(例如 f(x)=x2sin⁡(1/x)f(x)=x2sin(1/x) 在 x=0x=0 附近,其导函数在 x=0x=0 处振荡无极限)。

  • f'(x)不能有跳跃间断点(即左右导数存在但不相等的情况),因为这会违反介值性。

定积分

概念和性质

简化为步骤:

  • 定义中可以看出定积分的必要条件是,在有限区间内有界函数才可能存在定积分;
  • 定积分种的两个任取:第一个任取说明,所取的每个宽度大小(区间长度)都是不确定的,在这个区间内任取一个f(x)作为高(高不确定)
  • 定积分又称为黎曼积分。

几何意义

定积分的精确定义

定积分的存在定理

必要性:定积分的存在性,也称一元函数的常义可积性,即“区间有限,函数有界”。

充分性:

定积分的性质

定理:设f(x)[a,b]上的非负连续函数,那么只要f(x)不恒等于0,则必有:

                                                      \int_{a}^{b}f(x)dx >0

推广为:设f(x)g(x)[a,b]上的非负连续函数,且f(x)-g(x)\geqslant 0,且不恒等于0则必有:

                                                      \int_{a}^{b}f(x)dx-\int_{a}^{b}g(x)dx >0

变限积分

概念与性质

反常积分

概念与性质

敛散性判别法

两个重要结论

上面的两个重要结论要结合等价无穷小替换进行使用

小结

  • 对于无穷区间的反常积分,即\int_{a}^{+\infty }f(x)dx,关键是看f(x)\rightarrow 0的速度(即无穷小的阶数)
  • 对于有限区间的无界函数,即\int_{a}^{b}f(x)dx,其中\lim_{x \to a^{+}}f(x) = \infty或者是\lim_{x \to b^{-}}f(x) = \infty,关键是f(x)\rightarrow \infty的速度(无穷大的阶数)
  • 关键是在比较时,如何找到恰当的比较对象
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值