目录
思维导图:
不定积分
不定积分的概念
注:
- 当遇到一些比较复杂的具体的函数,而且区间内存在振荡间断点的函数
时,通过先求出他的原函数
,然后通过求导
,若得出是
,且在一些需要处理的点处,仍然可以得出
,那么
就是
的原函数,也就是说存在不定积分
得出,若
处处有定义,则
处处可导
处处连续
得出,若
处处可导,且
的导数值刚刚好等于
函数值,则
处处有定义
不定积分的存在定理
(1)连续函数必有原函数
。
(2)含第一类间断点和无穷间断点的函数在包含该间断点的区间内必没有原函数
,但若
在包含振荡间断点区间内不确定是否有原函数
。
下面时对第一条定理的证明:
注:一旦连续就会有下面的式子成立:
1. 这个式子是不定积分与定积分的一个桥梁,但是实际上不定积分与定积分没有任何关系
2. 即不定积分的导数就是
。
对于第二条定理的证明:
通过研究具备什么性质,从而推断第二条定理中第一类间断点的函数
在包含该间断点的区间内必没有原函数
正确性
、上面的b的结论在几何上说明了在点处,说明在
处附近点的斜率就是在
处导函数值
上面的介值性比较宽泛的定义:介值性是一个更弱的全局性质。它只要求函数在某个区间内“覆盖”所有中间值,而不要求函数在每个点都连续。因此,连续性足以保证介值性,但介值性不需要连续性。
而如果导数存在的话,那么根据导数定义和洛必达法则可以得出在处附近的点
的极限也是导数
的值,说明这其中是没有突变,而是平滑度过,所以肯定会有介值性。
也就是说首先:导数不能有“跳跃”间断,因为根据导数的定义,如果导数在某点存在,它必须满足某种“平滑”过渡。因此,即使导数不连续,它仍然必须通过所有中间值。
另一个角度证明第一类间断点的以及无穷间断点函数在包含该间断点的区间内必没有原函数
正确性
证明振荡间断点函数在包含该间断点的区间内不确定原函数
正确性
由上面的例子说明:对于某些振荡间断点来说,其实是将在无穷区间内的无穷延伸,但是振荡间断点则是在有限区间内进行无穷延伸。
小结
- 如果
存在,当导函数在一点的极限存在时,导函数在这一点必定是连续的。
- 如果导函数在这一点存在,则这一点一定不会是导函数的第一类间断点
- 在一条处处有切线的曲线上,不会发生切线斜率值在一点突变的情况(因为介值性)
- 若
可导,则
可能是连续,也可能是振荡间断点。
上面的第四,可以详细写成:
若函数 在某个区间上可导,则其导函数
满足介值性(达布性质)。此时:
-
可能连续(例如 f(x)=x2f(x)=x2,其导函数 f′(x)=2xf′(x)=2x 连续)。
-
也可能不连续,但此时的不连续只能是振荡型间断点(例如 f(x)=x2sin(1/x)f(x)=x2sin(1/x) 在 x=0x=0 附近,其导函数在 x=0x=0 处振荡无极限)。
-
不能有跳跃间断点(即左右导数存在但不相等的情况),因为这会违反介值性。
定积分
概念和性质
简化为步骤:
- 定义中可以看出定积分的必要条件是,在有限区间内的有界函数才可能存在定积分;
- 定积分种的两个任取:第一个任取说明,所取的每个宽度大小(区间长度)都是不确定的,在这个区间内任取一个
作为高(高不确定)
- 定积分又称为黎曼积分。
几何意义
定积分的精确定义
定积分的存在定理
必要性:定积分的存在性,也称一元函数的常义可积性,即“区间有限,函数有界”。
充分性:
定积分的性质
定理:设是
上的非负连续函数,那么只要
不恒等于0,则必有:
推广为:设,
是
上的非负连续函数,且
,且不恒等于0则必有:
变限积分
概念与性质
反常积分
概念与性质
敛散性判别法
两个重要结论
上面的两个重要结论要结合等价无穷小替换进行使用
小结
- 对于无穷区间的反常积分,即
,关键是看
的速度(即无穷小的阶数)
- 对于有限区间的无界函数,即
,其中
或者是
,关键是
的速度(无穷大的阶数)
- 关键是在比较时,如何找到恰当的比较对象。