思维导图
在进行计算时,可以参照上面的思维导图进行训练,训练好其中的方法。
基本积分公式
不定积分的积分法
凑微分法
公式:
上面的式子实际上可以看作是复合函数的求导的逆运算
注:
- 若是两项相乘时,在尝试是否要使用此方法时可以,先对复杂的式子先求导,看是否是等于剩余的比较简单的式子,如果等于的话,那么就进行凑微分
- 凑微分的目的是化繁为简,不要越化越复杂
常用的凑微分公式
换元法
基本思想:
本质是:比较复杂,如含“
”的式子,,这是引入新自变量
,将原式化简为
,可代入公式。
注:要为单调可导函数,且不要忘记计算之后要将
回代
常用换元法
即:一般为平方的和或者是平方的差,则化为三角函数
小结:
- 三角代换:在根式内部一般为平方的和或者是平方的差,则用三角代换
- 恒等换变形后在做三角代换:在根式内部一般为一元二次函数,则先进行配方法,配成三角代换的形式,然后再运用三角代换。
- 根式代换:当无法运用配方法变形,或者是上面的三角代换,那么就是将整个根式进行变成一个新的变量。
- 倒代换:当分母的幂次比分子高两次及两次以上时,使用倒代换
- 复杂函数的直接代换:当函数有指数,对数,反三角函数时,可以直接令复杂函数等于t,
分部积分法
公式:
分部积分法有时会产生下面的三种特殊情况: (其中为被积函数,
是一个式子)
- 方程:
- 相消:
- 递推式:
(其中可以通过低阶求出高阶式子)
有理函数的积分
定积分的计算
区间再现公式:
设为连续函数,则,会有
一般是当函数较为复杂,
比较简单时,可以考虑这个公式。
变限积分计算
一些题目:
一些重要结论
证明
反常积分的计算
在计算反常积分时,要注意识别奇点(端点,内部)