一元积分学计算

思维导图

在进行计算时,可以参照上面的思维导图进行训练,训练好其中的方法。

基本积分公式

不定积分的积分法

凑微分法

公式:

\int f[g(x)] g'(x)dx = \int f[g(x)]d[g(x)] = \int f(u)du

上面的式子实际上可以看作是复合函数的求导的逆运算

注:

  • 若是两项相乘时,在尝试是否要使用此方法时可以,先对复杂的式子先求导,看是否是等于剩余的比较简单的式子,如果等于的话,那么就进行凑微分
  • 凑微分的目的是化繁为简,不要越化越复杂

常用的凑微分公式

换元法

基本思想:

\int f(x)dx \overset{x=g(u)}{\rightarrow} \int f[g(u)]d[g(u)] = \int f[g(u)]g'(u)du

本质是:f(x)比较复杂,如含“\sqrt{}”的式子,,这是引入新自变量u,将原式化简为\int h(u)du,可代入公式。

注:x = g(u)要为单调可导函数,且不要忘记计算之后要将u = g^{-1}(x)回代

常用换元法

即:一般为平方的和或者是平方的差,则化为三角函数

小结:

  • 三角代换:在根式内部一般为平方的和或者是平方的差,则用三角代换
  • 恒等换变形后在做三角代换:在根式内部一般为一元二次函数,则先进行配方法,配成三角代换的形式,然后再运用三角代换。
  • 根式代换:当无法运用配方法变形,或者是上面的三角代换,那么就是将整个根式进行变成一个新的变量。
  • 倒代换:当分母的幂次比分子高两次及两次以上时,使用倒代换
  • 复杂函数的直接代换:当函数有指数,对数,反三角函数时,可以直接令复杂函数等于t,

分部积分法

公式:\int udv = uv - \int vdu

分部积分法有时会产生下面的三种特殊情况:   (其中I_{1}为被积函数,[]是一个式子)

  1. 方程:I_{1} =[] - I_{1}   
  2. 相消:I=[] - I_{1} + I_{1} 
  3. 递推式:I_{n} = F(I_{n-1},I_{n-2})  (其中可以通过低阶求出高阶式子)

有理函数的积分

定积分的计算

区间再现公式:

f(x)为连续函数,则,会有 \int_{a}^{b}f(x)dx = \int_{a}^{b}f(a+b-x)dx

一般是当f(x)函数较为复杂,f(x)+f(a+b-x)比较简单时,可以考虑这个公式。

变限积分计算

一些题目:

一些重要结论

证明

反常积分的计算

在计算反常积分时,要注意识别奇点(端点,内部)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值