最长非降子序列(动态规划dp dynamic programming)

首先要理解一下什么叫做非降子序列
非降子序列,简单来说就是指给出一个数字序列,在不改变整体顺序的情况下摘出几个来组成一个子序列,这个序列满足从小到大的排序顺序。
所以,最长非降子序列,不难理解就是从这些子序列中挑出一个最长的子序列。

求解最长非降子序列长度思路:
总体思路就是倒着看,去看分别以每一个元素开头的最长非降子序列的长度,如果前面的数小于后面的某一个数,那么它的最长非降子序列长度就是后面那个数的最长非降子序列长度加一,找出最长的给它赋值。
核心:
a.初值 最后一个元素的最长非降子序列长度为1.
len[n]=1;(这里数组定义我是从1开始的,len[0]被我置空了)
b.理解上面所述的对应关系。

源码如下:

#include<iostream>
#include<bits/stdc++.h>
using namespace std;
int main()
{
	int num[20]={-1,48,16,45,47,52,46,36,28,46,69,14,42};
	int len[20];
	int n=12;
	int maxlength=0;
	len[12]=1;
	//求解以每一个元素开头的非降子序列的最大长度 
	for(int i=n-1;i>=1;i--)
	{
		int maxtemp=0;
		for(int j=i+1;j<=n;j++)
		{
			if(num[i]<=num[j]&&len[j]>maxtemp)
			{
				maxtemp=len[j];
			}
		}
		len[i]=maxtemp+1;
	}
	//求解最长非降子序列的长度 
	for(int i=1;i<=n;i++)
	{
		if(len[i]>maxlength)
		{
			maxlength=len[i];
		}
	}
	
	cout<<"最长非降子序列的长度为:"<<maxlength<<endl; 
	
	
	//动态规划——决策重现
	int count=maxlength;
	cout<<"其中的一种最长非降子序列为:";
	while(count)
	{
		for(int j=1;j<=n;j++)
		{
		    if(len[j]==count)
			{
				cout<<num[j]<<" "; 
				count--; 
			} 
		} 
		
	}
		
}

动态规划的决策重现:
核心思想:
去对应每一个元素的最长非降子序列的长度输出即可。

不过我认为这种决策重现也有着一定的弊端,那就是只能输出最长非降子序列的一种,如果有多种的话,不能全部展现出来。

展示

因为热爱,所以所向披靡

热爱

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
动态规划Dynamic Programming)是一种常用的算法思想,它通过将原问题分解为若干个子问题的解来求解原问题。在进行子问题的求解时,动态规划会保存已经求解过的子问题的结果,以便后续使用。这样,可以避免重复计算,提高算法的效率。 最长公共子序列(Longest Common Subsequence,简称LCS)是一个经典的动态规划问题。给定两个字符串S和T,求它们的最长公共子序列的长度。子序列是指从原序列中删除若干个元素后得到的序列,而不要求删除的元素的位置相邻。 我们可以定义一个二维数组dp[i][j],表示S的前i个字符和T的前j个字符的最长公共子序列的长度。则有以下状态转移方程: - 当S[i]==T[j]时,dp[i][j] = dp[i-1][j-1] + 1; - 当S[i]!=T[j]时,dp[i][j] = max(dp[i-1][j], dp[i][j-1])。 其中,当S[i]==T[j]时,表示S的第i个字符和T的第j个字符都在最长公共子序列中,那么这个最长公共子序列的长度就是S的前i-1个字符和T的前j-1个字符的最长公共子序列的长度再加上1。当S[i]!=T[j]时,表示S的第i个字符和T的第j个字符不可能同时在最长公共子序列中,那么最长公共子序列的长度就是S的前i-1个字符和T的前j个字符的最长公共子序列的长度,或者是S的前i个字符和T的前j-1个字符的最长公共子序列的长度中的较大值。 最终,最长公共子序列的长度就是dp[m][n],其中m和n分别是S和T的长度。 代码实现如下: ```python def longest_common_subsequence(S, T): m, n = len(S), len(T) dp = [[0] * (n+1) for _ in range(m+1)] for i in range(1, m+1): for j in range(1, n+1): if S[i-1] == T[j-1]: dp[i][j] = dp[i-1][j-1] + 1 else: dp[i][j] = max(dp[i-1][j], dp[i][j-1]) return dp[m][n] ``` 时间复杂度为O(mn),空间复杂度为O(mn)。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值