Spark Read/Write files

Read CSV
# cat people-comma.csv
name,age,job
Jorge,30,Developer
Bob,32,Developer
启动 spark-shell
$SPARK_HOME/bin/spark-shell --conf spark.hadoop.fs.defaultFS=file:///
val df = spark.read.option("header", "true").option("inferSchema", "true").csv("people-comma.csv")
scala> df.show
+-----+---+---------+
| name|age|      job|
+-----+---+---------+
|Jorge| 30|Developer|
|  Bob| 32|Developer|
+-----+---+---------+


scala> df.printSchema
   def printSchema(level: Int): Unit   def printSchema(): Unit

scala> df.printSchema
root
 |-- name: string (nullable = tr
### Pikachu靶场SQL注入Update关卡解析 在探讨Pikachu靶场中的SQL注入update关卡之前,理解SQL注入的根本原因有助于更好地掌握如何利用这种漏洞。SQL注入漏洞主要形成的原因是在数据交互中,前端的数据传入到后台处理时,没有做严格的判断,导致其传入的“数据”拼接到SQL语句中后,被当作SQL语句的一部分执行[^1]。 对于Pikachu靶场内的SQL注入update关卡,目标通常是通过构造特定输入来修改数据库内指定记录的内容。假设存在一个更新用户密码的功能页面`/update_password.php?userid=1&newpassword=test`,如果该功能未对参数进行充分验证,则可能允许攻击者提交恶意请求以更改任意用户的密码。 为了成功完成此挑战,可以尝试以下方法: #### 构造Payload 考虑如下场景:应用程序接受GET请求并将其直接嵌入UPDATE查询之中而没有任何过滤措施。此时可以通过精心设计的新密码值来进行测试: ```sql ' OR '1'='1 -- ``` 这将使最终形成的SQL命令变为类似于下面的形式(假定原始查询结构为`UPDATE users SET password = ? WHERE id = ?`): ```sql UPDATE users SET password='' OR '1'='1'-- '' WHERE id=1; ``` 上述操作实际上会把所有符合条件(`WHERE`)之前的字段都设置为空字符串,并且由于逻辑表达式始终成立使得条件部分失效,进而影响整个表单里满足ID等于给定数值的第一条记录之外的所有其他行也受到影响[^2]。 需要注意的是,在实际环境中实施此类行为属于非法活动;仅应在授权范围内练习这些技术,比如在一个专门用于学习目的搭建的安全实验室内。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhixingheyi_tian

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值