echarts大数据多图表绘制卡顿解决方案

本文探讨了ECharts在页面渲染过程中可能导致卡顿的原因及解决方案,包括合理管理图表生命周期以降低CPU占用,以及针对大数据量场景采用分片加载和增量渲染等技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

页面卡顿原因:

1、页面绘制的图比较多,每一个图例在没有数据的时候它会创建一个定时器去渲染气泡,页面切换后,echarts图例是销毁了,但是这个echarts的实例还在内存当中,同时它的气泡渲染定时器还在运行。这就导致Echarts占用CPU高,导致浏览器卡顿,当数据量比较大时甚至浏览器崩溃

2、数据量已经大到浏览器卡死了

解决方法:

1、在mounted()方法和destroy()方法之间加一个beforeDestroy()方法释放该页面的chart资源,我也试过使用dispose()方法,但是dispose销毁这个图例,图例是不存在了,但图例的resize()方法会启动,则会报没有resize这个方法,而clear()方法则是清空图例数据,不影响图例的resize,而且能够释放内存,切换的时候就很顺畅了,实现代码如下:

beforeDestroy(){
    this.$refs.myChart && this.$refs.myChart.clear();
};

2、数据量已经大到浏览器卡死,其实最好从设计上优化,要么不要一个页面展示那么多图,要么让服务端把数据做一下采样,毕竟那么多的点也没法看,另外echarts也提供了大数据量(百万以上)的渲染场景,分片加载数据和增量渲染。在大数据量的场景下(例如地理数的打点),就算数据使用二进制格式,也会有几十或上百兆,在互联网环境下,往往需要分片加载。appendData 接口提供了分片加载后增量渲染的能力,渲染新加入的数据块时不会清除原有已经渲染的部分,实现代码如下:

​var loadedChunkIndex = 0;
var chunkCount = rawData.length;//大数据被分了几组list
function appendData() {
    if (loadedChunkIndex >= chunkCount) {
        return;
    }
    setTimeout(function () {
        chart.appendData({seriesIndex: 0, data: rawData[loadedChunkIndex]});
        loadedChunkIndex++;
        appendData();
    }, 300);
}
appendData();

注意事项:

1、我们现在所有图表组件中接口数据都是通过dataset参数实现的,对于巨大数据量的渲染(如百万以上的数据量),需要使用 appendData 进行增量加载,这种情况不支持使用 dataset,需要使用series.data。

2、目前并非所有的图表都支持分片加载时的增量渲染。目前支持的图有:ECharts 基础版本的 散点图(scatter) 和 线图(lines)。ECharts GL 的 散点图(scatterGL)、线图(linesGL) 和 可视化建筑群(polygons3D)。

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值