杨辉三角与二项式定理

杨辉三角的数字和二项式展开的系数有对应关系,如下图:

\\ \left ( a+b \right )^{0}=1\\ \left ( a+b \right )^{1}=a+b\\ \left ( a+b \right )^{2}=a^{2}+2ab+b^{2}\\ \left ( a+b \right )^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}\\ \left ( a+b \right )^{4}=a^{4}+4a^{3}b+6a^{2}b^{2}+4ab^{3}+b^{4}

通过二项式定理:\left ( a+b \right )^{n}=\sum_{k=0}^{n}C_{n}^{k}a^{n-k}b^{k},我们可以用杨辉三角形的性质来求组合数。时间复杂度O(n^2)

int n;
ll c[maxn][maxn];
void init(){
    for(int i = 0;i <= n;i++){
        c[i][0] = 1;
        for(int j = 1;j <= i;j++){
            c[i][j] = (c[i-1][j-1]+c[i-1][j])%mod;
        }
    }
}

还有一个O(n)的算法,运用性质:C_{n}^{k}=\frac{n-k+1}{k}C_{n}^{k-1},可以算出指定n的C_{n}^{k}

int n;
ll c[maxn];
void init(){
    c[0] = 1;
    for(int i = 1;i <= n;i++){
        c[i] = c[i-1]*(n-i+1)/i;
    }
}    

推荐一个例题:牛客Wannafly挑战赛18 - A题

AC代码:

#include <bits/stdc++.h>

using namespace std;
const int maxn = 1e3+10;
const int mod = 1e9+7;
typedef long long ll;
int n;
ll c[maxn][maxn];
void init(){
    for(int i = 0;i <= n;i++){
        c[i][0] = 1;
        for(int j = 1;j <= i;j++){
            c[i][j] = (c[i-1][j-1]+c[i-1][j])%mod;
        }
    }
}

int main()
{
    scanf("%d",&n);
    init();
    /*for(int i = 0;i <= n-1;i++){
        cout<<c[i]<<" ";
    }*/
    ll ans = 0;
    for(int i = 0;2*i <= (n-1);i=i+2){
        ans = (ans + c[n-1][i]*c[n-1-i][i]%mod)%mod;
    }
    printf("%lld\n",ans);
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值