上一章:《RocketMq详解:一、RocketMQ 介绍及基本概念》
文章目录
在上一章中我们对Rocket的基础知识、特性以及四大核心组件进行了详细的介绍,本章带着大家一起去在项目中具体的进行应用,并设计将其作为一个工具包只提供消息的分发服务和业务模块进行解耦
在进行本章的学习之前,需要确保你的可以正常启动和访问RocketMq服务,还未安装的可以移步至此:
1.添加maven依赖
<dependency>
<groupId>org.apache.rocketmq</groupId>
<artifactId>rocketmq-spring-boot-starter</artifactId>
<version>2.2.3</version>
</dependency>
2.项目结构
3.配置管理
rocketmq:
name-server: 127.0.0.1:9876
# 生产者
producer:
group: boot_group_1
# 消息发送超时时间
send-message-timeout: 3000
# 消息最大长度4M
max-message-size: 4096
# 消息发送失败重试次数
retry-times-when-send-failed: 3
# 异步消息发送失败重试次数
retry-times-when-send-async-failed: 2
# 消费者
consumer:
group: boot_group_1
# 每次提取的最大消息数
pull-batch-size: 5
上面的配置如果是在分布式环境下也可以配置在Apollo或nacos等配置中心里进行动态配置
4.配置类
在配置类中主要定义两个Bean的加载,即RocketMQTemplate和DefaultMQProducer,主要是提供消息发送的能力,即生产消息;
import org.apache.rocketmq.client.producer.DefaultMQProducer;
import org.apache.rocketmq.spring.core.RocketMQTemplate;
import org.springframework.beans.factory.annotation.Value;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
/**
* @author ninesun
* @ClassName RocketMqConfig
* @description: 消息中间件配置类
* @date 2024年05月19日
* @version: 1.0
*/
@Configuration
public class RocketMqConfig {
@Value("${rocketmq.name-server}")
private String nameServer;
@Value("${rocketmq.producer.group}")
private String producerGroup;
@Value("${rocketmq.producer.send-message-timeout}")
private Integer sendMsgTimeout;
@Value("${rocketmq.producer.max-message-size}")
private Integer maxMessageSize;
@Value("${rocketmq.producer.retry-times-when-send-failed}")
private Integer retryTimesWhenSendFailed;
@Value("${rocketmq.producer.retry-times-when-send-async-failed}")
private Integer retryTimesWhenSendAsyncFailed;
@Bean
public RocketMQTemplate rocketMqTemplate() {
RocketMQTemplate rocketMqTemplate = new RocketMQTemplate();
rocketMqTemplate.setProducer(defaultMqProducer());
return rocketMqTemplate;
}
@Bean
public DefaultMQProducer defaultMqProducer() {
DefaultMQProducer producer = new DefaultMQProducer();
producer.setNamesrvAddr(this.nameServer);
producer.setProducerGroup(this.producerGroup);
producer.setSendMsgTimeout(this.sendMsgTimeout);
producer.setMaxMessageSize(this.maxMessageSize);
producer.setRetryTimesWhenSendFailed(this.retryTimesWhenSendFailed);
producer.setRetryTimesWhenSendAsyncFailed(this.retryTimesWhenSendAsyncFailed);
return producer;
}
}
5.基础用法
5.1 消息生产
编写一个生产者接口类,分别使用RocketMQTemplate和DefaultMQProducer实现消息发送的功能,然后可以通过Dashboard控制面板查看消息详情
- 编写Controller进行消息的发送
import com.alibaba.fastjson.JSON;
import lombok.extern.slf4j.Slf4j;
import org.apache.rocketmq.client.producer.DefaultMQProducer;
import org.apache.rocketmq.client.producer.SendResult;
import org.apache.rocketmq.common.message.Message;
import org.apache.rocketmq.spring.core.RocketMQTemplate;
import org.springframework.web.bind.annotation.GetMapping;
import org.springframework.web.bind.annotation.RestController;
import javax.annotation.Resource;
import java.util.HashMap;
import java.util.Map;
@RestController
@Slf4j
public class TestController01 {
@Resource
private RocketMQTemplate rocketMqTemplate;
@Resource
private DefaultMQProducer defaultMqProducer;
/**
* 利用rocketMqTemplate发送消息
*
* @return
*/
@GetMapping("/send/msg1")
public String sendMsg1() {
try {
// 构建消息主体
Map<String, String> msgBody = new HashMap<>();
msgBody.put("data", "利用rocketMqTemplate发送消息");
// 发送消息
rocketMqTemplate.convertAndSend("boot-mq-topic", JSON.toJSONString(msgBody));
} catch (Exception e) {
e.printStackTrace();
}
return "OK";
}
/**
* 利用DefaultMQProducer发送消息
* @return
*/
@GetMapping("/send/msg2")
public String sendMsg2() {
try {
// 构建消息主体,此处可以用对象代替,为了方便演示,使用map
Map<String, String> msgBody = new HashMap<>();
msgBody.put("data", "利用DefaultMQProducer发送消息");
// 构建消息对象
Message message = new Message();
message.setTopic("boot-mq-topic");
message.setTags("boot-mq-tag");
message.setKeys("boot-mq-key");
message.setBody(JSON.toJSONString(msgBody).getBytes());
// 发送消息,打印日志
SendResult sendResult = defaultMqProducer.send(message);
log.info("msgId:{},sendStatus:{}", sendResult.getMsgId(), sendResult.getSendStatus());
} catch (Exception e) {
e.printStackTrace();
}
return "OK";
}
}
自己自行测试,访问这两个接口后,我们可以在Dashboard控制面板查看到:
5.2 消息消费者
接下来,我们创建一个消息消费者。在Spring Boot项目中,我们可以使用@RocketMQMessageListener注解来定义一个消息消费者。
import com.alibaba.fastjson.JSON;
import com.example.demo.po.MessageData;
import com.example.demo.po.User;
import org.apache.rocketmq.spring.annotation.RocketMQMessageListener;
import org.apache.rocketmq.spring.core.RocketMQListener;
import org.springframework.stereotype.Service;
/**
* @author hb24795
* @ClassName BootMqConsumer
* @description: 消费者
* @date 2024年05月26日
* @version: 1.0
*/
@Service
@RocketMQMessageListener(topic = "boot-mq-topic", consumerGroup = "boot_group_1")
public class BootMqConsumer implements RocketMQListener<String> {
@Override
public void onMessage(String message) {
System.out.printf("------- StringConsumer received:");
System.out.println(message);
}
}
当然你可以设置更多的消费前置条件:
@Component
@RocketMQMessageListener(topic = "your_topic_name", consumerGroup = "your_consumer_group_name",selectorExpression = "your_tag", selectorType = ExpressionType.TAG)
public class MyConsumer implements RocketMQListener<String> {
@Override
public void onMessage(String message) {
// 处理消息的逻辑
System.out.println("Received message: " + message);
}
}
注意:此处的consumerGroup要和我们配置的group对应
上面我们已经完成了一个基本的从消息发送到消息消费的逻辑,大家可以在自己的项目中结合设计模式,aop等来定制化自己的消息中间件,但是消息的类型远不止这几个,在实现之前我们先把消息的发送代码和我们的业务代码进行解耦
@Component
public class MessageProduct {
@Resource
private RocketMQTemplate rocketMqTemplate;
@Resource
private DefaultMQProducer defaultMqProducer;
public SendResult SendMessage(String topic, Object data, List<String> keys, String tags) throws MQBrokerException, RemotingException, InterruptedException, MQClientException {
Message message = new Message();
if (StringUtils.isBlank(topic)) {
return null;
} else {
message.setTopic(topic);
}
if (data != null) {
message.setBody(JSON.toJSONString(data).getBytes());
}
if (!CollectionUtils.isEmpty(keys)) {
message.setKeys(keys);
}
if (StringUtils.isBlank(tags)) {
message.setTags(tags);
}
message.setBody(JSON.toJSONString(data).getBytes());
// 发送消息,打印日志
return defaultMqProducer.send(message);
}
}
5.3 延迟消息
RocketMQ 支持延迟消息发送,但并非任意时间,而是有特定的延迟等级。在较旧的版本中,延迟等级从1到18,每个等级对应一个固定的延迟时间范围。然而,随着RocketMQ的更新发展,其对于延迟消息的支持变得更加灵活。
根据最新的资料,RocketMQ 5.x版本支持的最大延迟时间可以非常长,可达一年之久,这意味着在一定意义上,它能够满足大部分应用场景对于延迟消息的需要,尽管这并不等同于可以任意指定任意时间精度的延迟。
我们先看看必须通过指定的等级进行延迟的实现:
RocketMQ不支持任意时间的延迟,只有18个等级的延迟时间,默认是:1s 5s 10s 30s 1m 2m 3m 4m 5m 6m 7m 8m 9m 10m 20m 30m 1h 2h。从头到尾共18个等级时间,s、m、h、d,分别表示秒、分、时、天。
默认的18个等级对应的时间可以修改,在broker.conf中增加如下配置,根据自身需求修改时间,然后重启broker。
1、延迟消息的原理
如果让你来设计RocketMQ的延迟消息,你会怎么设计?
1.延迟消息也是个消息,只是多了延迟时间,既然是消息,不管是不是要立刻处理,先找个临时Topic存储起来。
2.Topic里面实际上是一个个队列,那所有的延迟消息要存在一个队列里吗?不要放在同一个队列里,因为消息各自都有不同的延迟时间,如果放在一个队列里,会牵扯到其余问题:比如排序、比如记录消费位置等。所以是按延迟时间分开存。
3.消息已经存起来了,那怎么处理呢?既然涉及到了延迟时间,那自然启动线程去定时获取消息,判断消息的延迟时间是否已经到达,到达之后则取出来投放到目的Topic。
讲到这里,延迟消息的架构图基本浮现出来了:
实际上RocketMQ在设计延迟消息时,跟上面的思路基本类似,不在赘述,额外补充几点:
1.消息进入Broker后,会被存储在TopicSCHEDULE_TOPIC_XXXX中,只是在Dashboard中看不到。
TopicSCHEDULE_TOPIC_XXXX中有18个消息队列,分别存储18个延迟等级对应的消息。
2.RocketMQ 在启动时,会从broker.conf中获取18个等级对应的时间,延迟等级和时间的关系会存在放到DelayLevelTable中。
3.RocketMQ会开启18个定时任务每隔100ms,从TopicSCHEDULE_TOPIC_XXXX判断18个队列里的第一个消息是否可以被投放,如果可以投放,则在投放到原本的目的Topic。
判断逻辑:存入时间+延迟时间 > 当前时间。
说到这里,估计你也能猜到,为什么不支持自定义延迟时间了,核心原因还是性能问题。
试想一下,如果设计成任意时间,那么就不可能使用18个队列了,更不可能使用无限个队列了,只可能使用单个队列。
但是如果使用单个队列,按照先进先出的存放的话,那出现需要后进先出的消息怎么办?那只能对整个队列进行排序,如果消息量很大,每次有消息进来都需要排序,那CPU肯定会被玩爆。
而且队列里的消息被消费后,都会记录偏移量,如果每次有消息进来都要排序,那偏移量则失去意义,增加了消息丢失的风险。
所以,RocketMQ的这种18个延迟时间等级的设计,虽然在延迟时间的自由度上作出了妥协,但是基本满足业务,性能也很优秀。
2.具体实现
我们对上面的通用发送进行修改:
public SendResult SendMessage(String topic, Object data, List<String> keys, String tags, Integer delayLevel) throws MQBrokerException, RemotingException, InterruptedException, MQClientException {
Message message = new Message();
if (StringUtils.isBlank(topic)) {
return null;
} else {
message.setTopic(topic);
}
if (data != null) {
message.setBody(JSON.toJSONString(data).getBytes());
}
if (!CollectionUtils.isEmpty(keys)) {
message.setKeys(keys);
}
if (StringUtils.isBlank(tags)) {
message.setTags(tags);
}
if (delayLevel != null) {
message.setDelayTimeLevel(delayLevel);
}
message.setBody(JSON.toJSONString(data).getBytes());
// 发送消息,打印日志
return defaultMqProducer.send(message);
}
此处设置的等级5,可能对应1分钟的延迟,但具体等级和时间的映射关系可以根据RocketMQ服务器的配置有所不同
我们测试一下:
@GetMapping("/send/msg2")
public String sendMsg2() {
try {
// 构建消息主体,此处可以用对象代替,为了方便演示,使用map
User user = User.builder()
.id(1)
.name("ninesun")
.build();
SendResult sendResult = messageProduct.SendMessage("boot-mq-topic", user, Collections.singletonList(user.getId().toString()), null, null);
log.info("msgId:{},sendStatus:{}", sendResult.getMsgId(), sendResult.getSendStatus());
} catch (Exception e) {
e.printStackTrace();
}
return "OK";
}
如果我们想实现任意时间的延迟,可以利用上面的延迟等级进行实现
我只需要根据自定义的延迟时间获取延迟等级
首先自定义一个消息体,用于存储必要的信息
@Data
@Builder
@AllArgsConstructor
@NoArgsConstructor
public class DelayMessageDTO<T> {
private T data;
private Integer delayTime;
private String topic;
private List<String> keys;
private String tags;
}
设计一个简单的算法用于获取延迟等级
private static final Integer[] delayTimes = {1, 5, 10, 30, 60, 120, 180, 240, 300, 360, 420, 480, 540, 600, 1200, 1800, 3600, 7200};
private Integer getDelayLevel(Integer delayTime) {
if (delayTime == null || delayTime == 0) {
return null;
}
for (int i = 0; i < delayTimes.length; i++) {
int level = i + 1;
if (delayTime.equals(delayTimes[i])) {
return level;
}
if (delayTime > delayTimes[i] && delayTime < delayTimes[i + 1]) {
return level;
}
}
return null;
}
新增一个消费者专门用于处理该消息的延迟
@Service
@RocketMQMessageListener(topic = "delay-consumer-topic", consumerGroup = "boot_group_1")
@Slf4j
public class DelayMqConsumer implements RocketMQListener<String> {
@Resource
MessageProduct messageProduct;
@Override
public void onMessage(String message) {
log.info("收到延迟消费消息,消息:{}", message);
System.out.println(message);
DelayMessageDTO delayMessageDTO = JSON.parseObject(message, DelayMessageDTO.class);
log.info("剩余:{}s", delayMessageDTO.getDelayTime());
try {
messageProduct.SendDelayMessage(delayMessageDTO);
} catch (MQBrokerException e) {
throw new RuntimeException(e);
} catch (RemotingException e) {
throw new RuntimeException(e);
} catch (InterruptedException e) {
throw new RuntimeException(e);
} catch (MQClientException e) {
throw new RuntimeException(e);
}
}
}
消息的发送
public SendResult SendDelayMessage(DelayMessageDTO data) throws MQBrokerException, RemotingException, InterruptedException, MQClientException {
// 发送消息,打印日志
if (data == null) {
return null;
}
Integer delayLevel = this.getDelayLevel(data.getDelayTime());
if (delayLevel == null) {
return this.SendMessage(data.getTopic(), data, data.getKeys(), data.getTags(), delayLevel);
}
Integer delayTime = data.getDelayTime() - delayTimes[delayLevel - 1];
data.setDelayTime(delayTime);
return this.SendMessage("delay-consumer-topic", data, data.getKeys(), data.getTags(), delayLevel);
}
至此我们就可以简单的实现一个消息的任意时间延迟,但是实际的延迟实现中,我们并不推荐该延迟方式,因为这种延迟完全依赖于mq的性能,如果遇到消息的积压等,我们的延迟将变得十分不可靠,很多开源社区中推荐:
- 外部存储与调度:将消息和期望的发送时间存储到数据库或缓存中(如Redis),然后使用一个定时任务(如Quartz、Spring Scheduler)定期检查这些存储的消息,当达到预定时间时,再通过DefaultMQProducer发送出去。
- 利用死信队列与TTL:虽然这不是直接实现任意时间延迟的方式,但可以通过设置消息的TTL(生存时间)和死信队列机制间接实现。消息到期后成为死信,触发特定逻辑进行处理或重定向到另一个队列进行实际发送。
在RocketMQ5.0版本,支持任意时段的延迟消息。在Github中最新的版本中已经解决了这个问题,[ISSUE #6203] Allow to publish delay message with arbitrary timestamp #6204
如果还未安装,可以参考:《MacOS环境下RocketMQ5.0+安装及部署 RocketMQ Dashboard 可视化》
6.基于RocketMQ5.0+实现任意时间的消息延迟
RocketMQ 5.0+ 通过引入 时间轮算法(Timing Wheel) 实现任意时间精度的延迟消息调度,其底层原理结合了多级时间轮结构、异步任务调度和持久化存储机制。
1.时间轮算法的核心设计
RocketMQ 5.0+ 通过引入 时间轮算法(Timing Wheel) 实现任意时间精度的延迟消息调度,其底层原理结合了多级时间轮结构、异步任务调度和持久化存储机制。以下是核心实现原理的详细分析:
一、时间轮算法的核心设计
RocketMQ 5.0 的时间轮采用 多层分片结构(Hierarchical Timing Wheel),类似时钟的时针、分针、秒针,每层时间轮负责不同时间粒度的任务调度:
层级划分:
- 底层时间轮:以 秒级 为刻度(如 1ms/tick),处理短期延迟任务(例如 1 秒到 1 小时)。
- 高层时间轮:以 分钟级 或 小时级 为刻度,处理长期延迟任务(例如 2 小时到 3 天)。
- 任务降级:当高层时间轮的任务到期后,自动降级到下层时间轮继续调度,确保时间精度和吞吐量的平衡。
时间轮参数:
- 刻度数量:默认支持 2 天 的延迟范围(通过多层时间轮组合实现)。
- 刻度精度:默认 1 秒,可通过配置调整(例如拆分为毫秒级刻度)
2.延迟消息的存储与调度流程
消息转换与存储
消息转换:生产者发送延迟消息时,Broker 将其转换为 TimerRequest 对象,并设置目标投递时间戳(deliverTimeMs)。
持久化存储:
- 消息写入 CommitLog(与普通消息类似),但 Topic 被替换为系统 Topic rmq_sys_wheel_timer。
- 时间轮的槽位信息记录在 TimerLog 文件中(定长 100MB),确保消息持久化。
时间轮调度
入队逻辑:
- 根据延迟时间计算目标槽位,若延迟超过当前时间轮范围,则滚动到高层时间轮。
- 例如,延迟 3 天的消息会存储在高层时间轮的对应槽位。
出队逻辑:
- 时间轮指针每秒推进一次,触发当前槽位的所有到期消息。
- 到期消息通过 TimerDequeuePutService 线程投递到原始 Topic 的消费队列。
关键优化
异步调度与流控:
- 异步处理:时间轮的推进和消息投递通过独立线程池(如 TimerEnqueuePutService)完成,避免阻塞主线程。
- 流控机制:每个时间轮槽位设置阈值,防止消息堆积导致内存溢出。
消息恢复与容灾:
- 故障恢复:Broker 重启后,通过加载 TimerLog 文件重建时间轮状态,确保未投递消息不丢失。
- 数据一致性:消息投递前会校验 CommitLog 中的原始内容,避免数据损坏。
高并发优化
- 批量投递:同一槽位的到期消息批量触发投递,减少线程上下文切换。
- 随机延迟:对同时到期的消息添加随机抖动,避免单时间点投递压力过大
3.核心存储组件
RocketMQ 5.0 的延迟消息存储数据结构设计围绕 时间轮算法 展开,核心是通过 TimerLog 和 TimerWheel 两个关键文件实现高效存储与调度。以下是其存储结构的详细解析:
3.1 TimerLog(定时消息日志文件)
功能:记录所有延迟消息的元数据,按时间顺序追加写入,支持快速定位到期的消息。
文件结构:
- 固定大小:默认 37MB(可配置),采用定长格式存储。
- 记录格式:
public class TimerLogRecord {
long prevPos; // 前一条记录在 TimerLog 中的位置(链式结构)
long deliverTimeMs; // 消息到期时间戳(毫秒级)
long commitLogPos; // 消息在 CommitLog 中的物理位置
int msgSize; // 消息体长度
byte[] msgBody; // 消息体(可选,根据配置决定是否存储)
}
- 链式索引:通过 prevPos 实现消息的链式关联,避免全量扫描,提升读取效率
3.2 TimerWheel(时间轮槽位文件)
功能:管理时间轮的刻度槽位,每个槽位指向 TimerLog 中对应时间段的消息起始位置。
数据结构:
- 数组形式:默认包含 2 天 的时间刻度(每个刻度代表 1 秒),总槽数为 2 * 24 * 60 * 60 = 172800。
- 槽位对象(Slot):
public class Slot {
long firstPos; // 槽位第一条消息在 TimerLog 中的位置
long lastPos; // 槽位最后一条消息在 TimerLog 中的位置
int num; // 槽位当前消息数量
long timeMs; // 槽位对应的时间戳(毫秒级)
}
时间轮指针:通过 currentTimeMs 指针标识当前时间位置,每秒推进一次,触发槽位消息处理。
3.3 消息存储流程
1.消息写入阶段
1.替换 Topic:延迟消息写入时,Broker 将其原始 Topic 和 Queue ID 替换为系统 Topic rmq_sys_wheel_timer,并记录到消息的扩展属性中。
2.持久化路径:
- TimerLog:消息元数据(到期时间、CommitLog 位置等)追加写入 TimerLog 文件。
- TimerWheel:根据消息的 deliverTimeMs 计算时间偏移量,定位到对应的 Slot,并更新 Slot 的 firstPos 和 lastPos。
2.消息调度阶段
时间轮推进:定时任务(如 TimerDequeuePutService)每秒将时间轮指针前移一格,检查当前 Slot 的消息。
消息拉取:从当前 Slot 的 firstPos 开始,通过链式索引(prevPos)遍历 TimerLog,批量拉取到期消息。
消息投递:将到期消息恢复原始 Topic 和 Queue ID,重新写入 CommitLog,并通知消费者消费
针对上面这个流程其底层同样做了很多的优化和设计:
3.4 关键优化设计
1.分层存储与流控
- 冷热分离:TimerLog 仅存储消息索引,原始数据仍存于 CommitLog,减少重复存储。
- 批量处理:同一 Slot 的消息批量拉取和投递,降低 I/O 和网络开销。
2.容灾与恢复
- 文件持久化:TimerLog 和 TimerWheel 均采用文件存储,Broker 重启后可通过文件重建时间轮状态。
- 一致性校验:投递前校验 CommitLog 中的消息完整性,避免数据丢失。
3.高并发支持
- 多线程处理:通过线程池(如 TimerDequeueGetMessageService)并行处理不同 Slot 的消息。
- 随机抖动:对同时到期的消息添加随机延迟,分散投递峰值压力
4.适用场景与注意事项
适用场景:订单超时、定时任务、缓存失效等需精确控制时间的场景。
注意事项:
- 最大延迟限制:默认支持 2 天,需通过配置调整 TimerWheel 的时间范围。
- 资源监控:需监控 TimerLog 和 TimerWheel 的文件大小及内存占用。
- 业务层优化:避免大量消息集中在同一时刻到期,建议添加随机延迟。
通过 TimerLog 和 TimerWheel 的协同设计,RocketMQ 5.0 实现了高吞吐、低延迟的延迟消息调度,解决了传统延迟队列的固定时间粒度限制问题。
5.与传统延迟队列的对比
6.实战
为了使我们的消息发送方法更加通用,在后续的章节中我们的消息内容均使用下面这个对象:
@Data
@Builder
@AllArgsConstructor
@NoArgsConstructor
public class MessageDTO<T> {
private T data;
private Integer delayTime;
private String topic;
private String key;
private List<String> keys;
private String tags;
}
- 消息生产者
@Component
public class MessageProduct {
@Resource
private RocketMQTemplate rocketMqTemplate;
public SendResult SendMessage(MessageDTO data) {
// 创建一个Message对象
org.springframework.messaging.Message<?> message = MessageBuilder.withPayload(JSON.toJSONString(data))
.setHeader(RocketMQHeaders.KEYS,data.getKey())
.setHeader(RocketMQHeaders.TAGS,data.getTags())
.build();
return rocketMqTemplate.syncSendDelayTimeSeconds(data.getTopic(), message, data.getDelayTime());
}
}
- 消费者
@Service
@RocketMQMessageListener(topic = "boot-mq-topic", consumerGroup = "boot_group_1")
@Slf4j
public class BootMqConsumer implements RocketMQListener<MessageDTO> {
@Override
public void onMessage(MessageDTO message) {
log.info("收到延迟消息成功,消息体:{}", message);
}
}
- 测试
@GetMapping("/send/msg4")
public String sendMsg4() {
try {
// 构建消息主体,此处可以用对象代替,为了方便演示,使用map
User user = User.builder()
.id(1)
.name("ninesun")
.build();
MessageDTO<User> messageDTO = new MessageDTO<>();
messageDTO.setData(user);
messageDTO.setDelayTime(10);
messageDTO.setTopic("boot-mq-topic");
messageDTO.setKeys(Collections.singletonList(user.getId().toString()));
SendResult sendResult = messageProduct.SendMessage(messageDTO);
log.info("msgId:{},sendStatus:{},data:{}", sendResult.getMsgId(), sendResult.getSendStatus(), JSON.toJSONString(messageDTO));
} catch (Exception e) {
e.printStackTrace();
}
return "OK";
}
可以看到:
至此我们已经掌握了最基本的消息队列的使用