前言
哈喽友友们,最近科技圈可谓热闹非凡,有几件大事值得友友们关注——苹果与阿里携手,为国行版 iPhone 提供 AI 技术服务;DeepSeek R1 开源 6 个模型,其中 4 个源于阿里 Qwen;阿里云的通义灵码插件迅速集成了 DeepSeek - R1 满血版。我身边同事体验后赞不绝口,今天小支就为友友们带来通义灵码集成的 DeepSeek 满血版在 IDEA 中的使用教程~
DeepSeek 满血版在 IDEA 中怎么用?
1. 安装通义灵码
在 IDEA 的插件市场中直接搜 “通义灵码”,当然你也可以敲拼音 “TONGYI”,都可以搜到。然后点击 install 就可以安装了,支持 Java、Python、Go 等编程语言,VSCode 和 Visual Studio 也可以安装。

完成安装后,点击右侧边栏上通义灵码的小 icon 就可以打开和通义灵码的聊天窗口。点击左下角的下拉菜单,还可以在 Qwen - 2.5、DeepSeek - R1 和 DeepSeek - V3 模型中自由切换。
2. 体验智能问答
小支觉得 AI 编码助手最大的好处就是可以随时提问,不用再切换到浏览器去搜索,这能够极大提升我们的开发效率。况且真切到浏览器的聊天页面,也不一定能丝滑响应。

个人感觉,DeepSeek 官网应该是做了限流措施,在一定时间内只能提问一次,连续提问就会直接提示“服务器繁忙、请稍后再试”。
这也是没办法的事,算力紧张,DeepSeek 已经够努力了,但奈何访问量实在是太大。
就目前我的体感来说,通义灵码背后的算力应该是充足的,因为我前后高强度对话了一个小时,还没有碰到被拒绝的情况。
# flake8: noqa
# This file is used for deploying replicate models
# running: cog predict -i img=@inputs/00017_gray.png -i version='General - v3' -i scale=2 -i face_enhance=True -i tile=0
# push: cog push r8.im/xinntao/realesrgan
import os
os.system('pip install gfpgan')
os.system('python setup.py develop')
import cv2
import shutil
import tempfile
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from basicsr.archs.srvgg_arch import SRVGGNetCompact
from realesrgan.utils import RealESRGANer
try:
from cog import BasePredictor, Input, Path
from gfpgan import GFPGANer
except Exception:
print('please install cog and realesrgan package')
class Predictor(BasePredictor):
def setup(self):
os.makedirs('output', exist_ok=True)
# download weights
if not os.path.exists('weights/realesr-general-x4v3.pth'):
os.system(
'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P ./weights'
)
if not os.path.exists('weights/GFPGANv1.4.pth'):
os.system('wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P ./weights')
if not os.path.exists('weights/RealESRGAN_x4plus.pth'):
os.system(
'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P ./weights'
)
if not os.path.exists('weights/RealESRGAN_x4plus_anime_6B.pth'):
os.system(
'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P ./weights'
)
if not os.path.exists('weights/realesr-animevideov3.pth'):
os.system(
'wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-animevideov3.pth -P ./weights'
)
def choose_model(self, scale, version, tile=0):
half = True if torch.cuda.is_available() else False
if version == 'General - RealESRGANplus':
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
model_path = 'weights/RealESRGAN_x4plus.pth'
self.upsampler = RealESRGANer(
scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
elif version == 'General - v3':
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu')
model_path = 'weights/realesr-general-x4v3.pth'
self.upsampler = RealESRGANer(
scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
elif version == 'Anime - anime6B':
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
model_path = 'weights/RealESRGAN_x4plus_anime_6B.pth'
self.upsampler = RealESRGANer(
scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
elif version == 'AnimeVideo - v3':
model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=16, upscale=4, act_type='prelu')
model_path = 'weights/realesr-animevideov3.pth'
self.upsampler = RealESRGANer(
scale=4, model_path=model_path, model=model, tile=tile, tile_pad=10, pre_pad=0, half=half)
self.face_enhancer = GFPGANer(
model_path='weights/GFPGANv1.4.pth',
upscale=scale,
arch='clean',
channel_multiplier=2,
bg_upsampler=self.upsampler)
def predict(
self,
img: Path = Input(description='Input'),
version: str = Input(
description='RealESRGAN version. Please see [Readme] below for more descriptions',
choices=['General - RealESRGANplus', 'General - v3', 'Anime - anime6B', 'AnimeVideo - v3'],
default='General - v3'),
scale: float = Input(description='Rescaling factor', default=2),
face_enhance: bool = Input(
description='Enhance faces with GFPGAN. Note that it does not work for anime images/vidoes', default=False),
tile: int = Input(
description=
'Tile size. Default is 0, that is no tile. When encountering the out-of-GPU-memory issue, please specify it, e.g., 400 or 200',
default=0)
) -> Path:
if tile <= 100 or tile is None:
tile = 0
print(f'img: {img}. version: {version}. scale: {scale}. face_enhance: {face_enhance}. tile: {tile}.')
try:
extension = os.path.splitext(os.path.basename(str(img)))[1]
img = cv2.imread(str(img), cv2.IMREAD_UNCHANGED)
if len(img.shape) == 3 and img.shape[2] == 4:
img_mode = 'RGBA'
elif len(img.shape) == 2:
img_mode = None
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
else:
img_mode = None
h, w = img.shape[0:2]
if h < 300:
img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4)
self.choose_model(scale, version, tile)
try:
if face_enhance:
_, _, output = self.face_enhancer.enhance(
img, has_aligned=False, only_center_face=False, paste_back=True)
else:
output, _ = self.upsampler.enhance(img, outscale=scale)
except RuntimeError as error:
print('Error', error)
print('If you encounter CUDA out of memory, try to set "tile" to a smaller size, e.g., 400.')
if img_mode == 'RGBA': # RGBA images should be saved in png format
extension =

最低0.47元/天 解锁文章
2021

被折叠的 条评论
为什么被折叠?



