看盘细节系列 篇五:盘中突然拉升涨停的特征分析

系列文章

看盘细节系列 篇一:集合竞价尾盘突变
看盘细节系列 篇二:集合竞价的9点18分大单打到3%以下或以上,9点19分撤单
看盘细节系列 篇三:集合竞价的9点20分之前打到涨停/跌停,维持几分钟后,在9点20分之前撤单
看盘细节系列 篇四:集合竞价低开3%以上

三种典型分时图形态

  1. 火箭发射型

    • 特征股价在5分钟内垂直拉升超8%,分时线几乎无回调,常见于重大利好刺激或游资抱团股;
    • 盘口细节:结合封单质量判断,若涨停价封单量>流通盘的3%,可视为强势信号。
  2. 阶梯攀升型

    内容概要:本文是《目标检测入门指南》系列的第二部分,重点介绍用于图像分类的经典卷积神经网络(CNN)架构及其在目标检测中的基础作用。文章详细讲解了卷积操作的基本原理,并以AlexNet、VGG和ResNet为例,阐述了不同CNN模型的结构特点与创新点,如深层网络设计、小滤波器堆叠和残差连接机制。同时介绍了目标检测常用的评估指标mAP(平均精度均值),解释了其计算方式和意义。此外,文章还回顾了传统的可变形部件模型(DPM),分析其基于根滤波器、部件滤波器和空间形变代价的检测机制,并指出DPM可通过展开推理过程转化为等效的CNN结构。最后,介绍了Overfeat模型,作为首个将分类、定位与检测统一于CNN框架的先驱工作,展示了如何通过滑动窗口进行多尺度分类并结合回归器预测边界框。; 适合人群:具备一定计算机视觉和深度学习基础,从事或学习图像识别、目标检测相关方向的研发人员与学生;适合希望理解经典CNN模型演进及目标检测早期发展脉络的技术爱好者。; 使用场景及目标:①理解CNN在图像分类中的核心架构演变及其对后续目标检测模型的影响;②掌握mAP等关键评估指标的含义与计算方法;③了解DPM与Overfeat的设计思想,为深入学习R-CNN系列等现代检测器打下理论基础。; 阅读建议:此资源以综述形式串联多个经典模型,建议结合原文图表与参考文献进行延伸阅读,并通过复现典型模型结构加深对卷积、池化、残差连接等操作的理解,从而建立从传统方法到深度学习的完整认知链条。
    【源码免费下载链接】:https://renmaiwang.cn/s/3ahez lang 使用为VS Code提供C / C ++语言IDE功能: 该语言环境支持识别并处理编译过程中产生的各种错误与提示,并能有效管理代码的格式化与重构优化。 项目依赖于一个称为clangd的语言服务,用于跨引用管理。 特别是对于复杂的C/C++代码开发,此工具能够提供强大的帮助。 为了使用该扩展功能,请确保在PATH环境中已安装clangd语服务(可在x86-64 Linux、Windows或MacOS系统上自动配置)。 如果已有旧版本的clangd服务,则可通过控制面板检查是否需要升级。 需要注意的是,项目设置基于clang C++编译器,并支持处理复杂的C/C++代码结构。 然而,用户必须明确指定项目构建时使用的编译标志(例如在使用CMake等工具构建时,可通过设置-DCMAKE_EXPORT_COMPILE_COMMANDS=1来实现)。 该服务要求用户指定项目构建时使用的编译标志。 通常情况下,可以将此配置选项包含在源代码的顶部位置,并选择合适的存储方式(如符号链接或直接复制到目标目录中)。 它应位于项目的根目录下:作为符号链接或直接放置在此处即可。 特征代码完成工具能够实时反馈开发过程中可能存在的问题。 在您输入项目名时,该工具会自动检测并报告潜在的编译错误与提示信息,并提供相应的解决方案建议。 这种智能化的支持能够让开发过程更加高效和便捷。
    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    李小白杂货铺

    打赏是一种友谊,让我们更亲密。

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值