算法设计与分析第三次编程作业 14142. 【原4142】抗震救灾

题目描述

author: 侯不会 原OJ链接:https://acm.sjtu.edu.cn/OnlineJudge-old/problem/4142.

Description

近日,由于一场世纪大地震,某国通讯设施全面瘫痪。在灾后重建中,抢修通讯设备成为首要任务。现在,你已经了解该国的基本状况,该国首脑希望你设计一种方案,使得所用的救灾资金尽可能少。 已知该国地形可以简化成包含 n n n个点的一张无向图,每个点代表一座城市。由于地震的破坏,该国的城市之间已经只剩下 m m m条仍具备通行条件的双向道路。当然,目前该国的所有城市是联通的。现在,该国希望在一些仍能通行的道路下铺设通信电缆,使得任意两个城市之间能够通过通信电缆直接或间接地传递灾情。不过,若某条道路被破坏后,该国的所有城市不再全部联通,则这条道路被认为是危险道路,因为一旦这条道路被次生灾害破坏,那么相应的通信电缆也会被破坏,而且没有其他可供选择的途径来恢复通信。在这样的危险道路上,你只能选择用无线通信设备代替。(注意:在非危险道路上,即使无线设施的费用低于通信电缆的费用,你也只能铺设通信电缆,因为这种方式可靠性更高。)

Input Format

第一行包含两个正整数 n n n m m m。 接下来共 m m m行,第 i i i行包含四个整数 s [ i ] s[i] s[i] t [ i ] t[i] t[i] a [ i ] a[i] a[i] b [ i ] b[i] b[i],分别表示第 i i i条道路连接的两座城市,以及在该条道路上铺设电缆和架设无线设备的费用。

Output Format

第一行包含一个整数,表示最小代价。

Sample Input

8 11
2 6 0 9
2 7 8 6
7 3 4 0
4 8 3 0
4 5 0 0
4 1 1 10
2 4 0 10
7 6 0 10
2 3 2 1
1 4 1 0
1 5 2 4

Sample Output

13

数据范围

对于 30 % 30\% 30%的数据, n ≤ 500 n \le 500 n500 m ≤ 3000 m \le 3000 m3000。 对于额外 40 % 40\% 40%的数据,数据保证不存在危险道路。 对于 100 % 100\% 100%的数据, n ≤ 1 0 5 n \le 10^{5} n105 m ≤ 5 × 1 0 5 m \le 5 \times 10^{5} m5×105。 在每一部分数据中,均包含若干较小的测试点。

解决方案

#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
#include <queue>
using namespace std;
//本题的思路为Tarjan算法求无向图的桥边+Kruskal算法生成一棵最小生成树
//Tarjan算法的内容见https://visors.github.io/post/tarjan%E6%B1%82%E6%97%A0%E5%90%91%E5%9B%BE%E5%89%B2%E8%BE%B9/
//https://zhuanlan.zhihu.com/p/101923309
//https://blog.csdn.net/qq_39599067/article/details/81321884

//edge
struct edge {
    int start;
    int end;
    int a;
    int b;
    int num;
};
bool operator > (const edge &e1, const edge &e2) {return e1.a > e2.a;}

//DisjointSet
class Set {
public:
    int size;
    int *parent;

    Set(int s) {
        size = s;
        parent = new int[size];
        for (int i=0;i<size;++i) parent[i] = -1;
    }
    void Union(int u, int v)
    {
        int root1 = Find(u);
        int root2 = Find(v);//注意,这里必须要先find root,之前的板子是在外部去find,这里改成了内部find。因为这个导致有些数据集过不了。
        if (root1 == root2) return;
        if (parent[root1] > parent[root2]) {
            parent[root2] += parent[root1];
            parent[root1] = root2;
        }
        else {
            parent[root1] += parent[root2];
            parent[root2] = root1;
        }
    }
    int Find(int x)
    {
        if (parent[x] < 0) return x;
        return parent[x] = Find(parent[x]);
    }
};

//Some global variables
const int MAXN = 1e5+1;
const int MAXE = 5e5+2;
Set s(MAXN);
int dfn[MAXN], low[MAXN];// , fa[MAXN];
int n, m, tot,  num_of_bridge;
long long int cost;
vector<edge> edges[MAXN];

//tarjan algorithm
void tarjan(int start, int num)
{
    dfn[start] = low[start] = ++tot;
    for (int i=0;i<edges[start].size();++i) {
        int y = edges[start][i].end;
        int n = edges[start][i].num;
        if (!dfn[y]) {
            // fa[y] = start;
            tarjan(y,n);
            low[start] = min(low[start],low[y]);
            if (low[y] > dfn[start]) { //这种情况下,start->y是一条桥边
                s.Union(start,y);
                cost += edges[start][i].b;
                ++num_of_bridge;
            }
        }
        else if (num != n) low[start] = min(low[start],dfn[y]); //无向图是用双向的有向边来存储的,所以要规避父节点到自己的这条边。但是有时候确实有重边,这时候需要更新low
    }
}

int main() {
    memset(dfn,0,MAXN);
    // memset(fa,0,MAXN);
    cin >> n >> m;
    tot = 0,cost=0,num_of_bridge=0;
    for (int i = 1; i <= m; i++) {
        int s,t,a,b;
        cin >> s >> t >> a >> b; 
        edges[s].push_back({s,t,a,b,i});
        edges[t].push_back({t,s,a,b,i});
    }
    for (int i = 1; i <= n; i++)
        if (!dfn[i]) tarjan(i,0);

    //Kruskal
    priority_queue<edge,vector<edge>, greater<edge> > q;
    for (int i=1;i<=n;++i) {
        for (int j=0;j<edges[i].size();++j) {
            q.push(edges[i][j]);
        }
    }
    int edgesAccepted = 0;
    while (edgesAccepted < n-num_of_bridge-1) {
        edge e = q.top();
        q.pop();
        int u = s.Find(e.start);
        int v = s.Find(e.end);
        if (u != v) {
            ++edgesAccepted;
            s.Union(u,v);
            cost += e.a;
        }
    }
    // for (int i=1;i<=n;++i) cout << low[i] << ' ';
    cout << cost;
    return 0;
}

总结

这个算法写了我好久,Tarjan+Kruskal还是比较好想到的,但是具体实现起来有很多坑,比如之前的并查集使用错误,cost要声明为long long int,tarjan算法在有重边的时候的处理方式 (在edge类加上了一个num指代序号)。感谢助教学姐的耐心指教,但愿daydayup!

声明

本人对代码保有版权,但是题目来自校内OJ平台,本人没有题目的版权。如有侵权,请联系本人删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值