遍历回形数组

在这里插入图片描述

给定一个n阶段回形数组,然后有序输出:

int attrs[][] = {
				{0 ,1 ,2 ,3 },
				{11,12,13,4 },
				{10,15,14,5 },
				{9 ,8 ,7 ,6 },
		};

解决:



public class TwoTwo {
    public static void main(String[] args) {
        int attrs[][] = {
                {0, 1, 2, 3},
                {11, 12, 13, 4},
                {10, 15, 14, 5},
                {9, 8, 7, 6},
        };

        output(attrs);
    }

    public static void  output(int arr[][]){
        int row = arr.length; // 行
        if (row == 0){
            return;
        }
        int col = arr[0].length; // 列
        int count = col * row;

        int i = 0;
        int j = 0;

        while (count > 0){
            //输出上面的边 --- 因为 i(行) = 0固定, j(列)一直增加[0];
            for (int k = 1; k < col; k++){ //最大可以输出(col)列个数
                System.out.print(arr[i][j]+" ");
                count --;
                j++;
            } // 此时 j = col - 1

            // 输出右边的边----> 因为j(列) = cow - 1 固定, i(行)一直增加[0]
            for (int k = 1; k < row; k++){ // 最大可以输出(row)行个数
                System.out.print(arr[i][j]+" ");
                count--;
                i++;
            } // 此时 i = row - 1

            // 输出下边的边-----> 此时i(行) = cow -1固定,j(列)一直减少[cow-1]
            for (int k = 1; k < col ; k++) { // col列
                System.out.print(arr[i][j] + " ");
                count -- ;
                j --;
            } // 此时 j = 0

            // 输出左边的边-----> 此时j(列) = 0固定,i(行)一直减少[row-1]
            for (int k = 1; k < row ; k++) { // col列
                System.out.print(arr[i][j] + " ");
                count -- ;
                i --;
            }


            // 其实位置确定:第一次从[0][0]开始,第二次从[1][1]开始,[2][2],[3][3]  。。。
            i ++;
            j ++;

            // 每次都会减少2行2列
            row = row - 2;
            col = col - 2;

        }


    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值