题目解析
题目描述
struct TreeNode {
int val;
TreeNode *left;
TreeNode *right;
TreeNode() : val(0), left(nullptr), right(nullptr) {}
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
};
class Solution {
public:
bool isValidBST(TreeNode* root) {
}
};
题目解析
递归套路
如果一棵树是二叉搜索树,那么必须满足如下条件:
- 它的左右子树为二叉搜索树
- 左子树上所有节点的值均小于它的根节点的值
- 右子树上所有节点的值均大于它的根节点的值;
所以对于root节点,它必须知道每棵子树的如下信息:
- 当前子树是不是二叉搜索树
- 当前子树的最大值、最小值(因为一棵树即可能是某棵树的左子树,也可能是另一棵树的右子树)
因此,定义一个Info:
struct Info{
bool isBST;
int min;
int max;
explicit Info(bool isBST, int min, int max) : isBST(isBST), min(min), max(max){}
};
递归求解:
std::shared_ptr<Info> process(TreeNode* root){
if(root == nullptr){
return nullptr;
}
auto leftInfo = process(root->left);
auto rightInfo = process(root->right);
int max = root->val, min = root->val;
if(leftInfo != nullptr){
max = std::max(max, leftInfo->max);
min = std::min(min, leftInfo->min);
}
if(rightInfo != nullptr){
max = std::max(max, rightInfo->max);
min = std::min(min, rightInfo->min);
}
bool isBST = false;
if(
(leftInfo== nullptr ? true: leftInfo->isBST)
&&
(rightInfo== nullptr ?true:rightInfo->isBST)
&&
(leftInfo== nullptr?true:leftInfo->max<root->val)
&&
(rightInfo== nullptr?true:rightInfo->min>root->val)
) {
isBST=true;
}
return std::make_shared<Info>(isBST, min, max);
}
调用上面的递归:
bool isValidBST(TreeNode* root) {
if(root == nullptr){
return true;
}
return process(root)->isBST;
}
整体代码如下:
class Solution {
struct Info{
bool isBST;
int min;
int max;
explicit Info(bool isBST, int min, int max) : isBST(isBST), min(min), max(max){}
};
std::shared_ptr<Info> process(TreeNode* root){
if(root == nullptr){
return nullptr;
}
auto leftInfo = process(root->left);
auto rightInfo = process(root->right);
int max = root->val, min = root->val;
if(leftInfo != nullptr){
max = std::max(max, leftInfo->max);
min = std::min(min, leftInfo->min);
}
if(rightInfo != nullptr){
max = std::max(max, rightInfo->max);
min = std::min(min, rightInfo->min);
}
bool isBST = false;
if(
(leftInfo== nullptr ? true: leftInfo->isBST)
&&
(rightInfo== nullptr ?true:rightInfo->isBST)
&&
(leftInfo== nullptr?true:leftInfo->max<root->val)
&&
(rightInfo== nullptr?true:rightInfo->min>root->val)
) {
isBST=true;
}
return std::make_shared<Info>(isBST, min, max);
}
public:
bool isValidBST(TreeNode* root) {
if(root == nullptr){
return true;
}
return process(root)->isBST;
}
};
Morris遍历
二叉搜索树的中序遍历有序
class Solution {
public:
bool isValidBST(TreeNode* head) {
if(head == nullptr){
return nullptr;
}
TreeNode *curr = head;
TreeNode *mostRight = nullptr;
int pre = INT32_MIN;
bool ans = true;
while (curr != nullptr){
mostRight = curr->left;
if(mostRight != nullptr){
while (mostRight->right != nullptr && mostRight->right != curr){
mostRight = mostRight->right;
}
if(mostRight->right == nullptr){
mostRight->right = curr;
curr = curr->left;
continue;
}else{
mostRight->right = nullptr;
}
}
if(pre != INT32_MIN && pre >= curr->val){
ans = false;
}
pre = curr->val;
curr = curr->right;
}
return ans;
}
};
递归
如果一棵树是二叉搜索树,那么必须满足如下条件:
- 如果该二叉树的左子树不为空,则左子树上所有节点的值均小于它的根节点的值
- 若它的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
- 它的左右子树也为二叉搜索树。
因此,我们可以设计一个递归函数helper(root, lower, upper)
来递归判断,函数表示以root
为根的子树,判断子树中所有节点的值是否在(l,r)
的范围内(注意是开区间)。
- 如果root节点的值val不再
(l,r)
范围内说明不满足条件直接返回,否则递归调用它的左右子树是否满足。如果都满足才说明这是一棵二叉搜索树。 - 在递归调用左子树时,需要把
upper
改成root.val
,即helper(root.left, lower, root.val)
,因为左子树里所有节点的值均小于它的根节点的值。 - 在递归调用右子树时,需要把
low
改成root,val
,即helper(root.right, root.val, upper)
,因为右子树里所有节点的值均大于它的根节点的值。 - 函数递归调用的入口为
helper(root, -inf, +inf)
, inf 表示一个无穷大的值。
class Solution {
bool helper(TreeNode *root, long min, long max){
if(root == NULL){
return true;
}
if (root->val <= min || root->val >= max) return false;
return helper(root->left, min, root->val) && helper(root->right, root->val, max);
}
public:
bool isValidBST(TreeNode* root) {
return helper(root, LONG_MIN, LONG_MAX);
}
};
中序遍历
这道题实际上简化了难度,因为有时候二叉树可以是左<=根<右,而这道题设定为一般情况左<根<右,那么就可以用中序遍历来做。因为如果不去掉左=根这个条件的话,那么下边两个数用中序遍历无法区分:
20 20
/ \
20 20
它们的中序遍历结果都一样,但是左边的是 BST,右边的不是 BST。去掉等号的条件则相当于去掉了这种限制条件。下面来看使用中序遍历来做,这种方法思路很直接,通过中序遍历将所有的节点值存到一个数组里,然后再来判断这个数组是不是有序的
class Solution {
void helper(TreeNode *root, std::vector<int> &vals){
if(root == NULL){
return ;
}
helper(root->left, vals);
vals.emplace_back(root->val);
helper(root->right, vals);
}
public:
bool isValidBST(TreeNode* root) {
if (!root) return true;
vector<int> vals;
helper(root, vals);
int len = vals.size();
for (int i = 0; i < len - 1; ++i) {
if(vals[i] >= vals[i + 1]){
return false;
}
}
return true;
}
};
但是如果树很大,可能没有那么多的空间来存储。可以换个思路。
- 还是中序遍历,每次遍历到一个节点时,都和上一个节点比较
- curr->val必须要大于 pre.val,才是一颗二叉搜索树,才能进行下一个递归;否则,直接返回false
class Solution {
bool helper(TreeNode *root, TreeNode *&pre){
if(root == NULL){
return true;
}
bool res = helper(root->left, pre);
if(res == false){
return false;
}
if(pre != NULL){
if(pre->val >= root->val){
return false;
}
}
pre = root;
return helper(root->right, pre);
}
public:
bool isValidBST(TreeNode* root) {
TreeNode *pre = NULL;
return helper(root, pre);
}
};
中序遍历的迭代写法:
class Solution {
public:
bool isValidBST(TreeNode* root) {
std::stack<TreeNode *>s;
TreeNode *curr = root, *pre = NULL;
while (curr || !s.empty()){
while (curr){
s.push(curr);
curr = curr->left;
}
curr = s.top(); s.pop();
if(pre && curr->val <= pre->val){
return false;
}
pre = curr;
curr = curr->right;
}
return true;
}
};