题目来源
题目描述
给定一棵二叉搜索树和其中的一个节点 p ,找到该节点在树中的中序后继。如果节点没有中序后继,请返回 null 。
节点 p 的后继是值比 p.val 大的节点中键值最小的节点。
题目解析
Morris遍历
class Solution {
public:
TreeNode * inorderSuccessor(TreeNode *r, TreeNode *target) {
if(r == nullptr || target == nullptr){
return nullptr;
}
TreeNode *ans = nullptr;
TreeNode *curr = r;
TreeNode *mostRight = nullptr;
while (curr != nullptr){
mostRight = curr->left;
if(mostRight == nullptr){
if(curr == target){
ans = curr->right;
}
curr = curr->right;
}else {
while (mostRight->right != nullptr && mostRight->right != curr){
mostRight = mostRight->right;
}
if(mostRight->right == nullptr){
mostRight->right = curr;
curr = curr->left;
}else{
if(curr == target){
ans = curr->right;
}
mostRight->right = nullptr;
curr = curr->right;
//
}
}
}
return ans;
}
};
充分利用BST的性质
- 当根节点值小于等于p节点值,说明p的后继节点一定在右子树中,所以对右子节点递归调用此函数
- 如果根节点值大于p节点值,那么有可能根节点就是p的后继节点,或者左子树中的某个节点是p的后继节点,所以先对左子节点递归调用此函数,如果返回空,说明根节点是后继节点,返回即可,如果不为空,则将那个节点返回
class Solution {
public:
TreeNode* inorderSuccessor(TreeNode* root, TreeNode* p) {
if (!root) return NULL;
if (root->val <= p->val) {
return inorderSuccessor(root->right, p);
} else {
TreeNode *left = inorderSuccessor(root->left, p);
return left ? left : root;
}
}
};
思路
- 需要两个全局变量 pre 和 suc,分别用来记录祖先节点和后继节点
- 初始化将他们都赋为 NULL
- 然后在进行递归中序遍历时,对于遍历到的节点
- 首先看 pre 和p是否相同,如果相同,则 suc 赋为当前节点,然后将 pre 赋为 root
- 那么在遍历下一个节点时,pre 就起到记录上一个节点的作用
class Solution {
public:
TreeNode* inorderSuccessor(TreeNode* root, TreeNode* p) {
if (!p) return NULL;
inorder(root, p);
return suc;
}
void inorder(TreeNode *root, TreeNode *p) {
if (!root) return;
inorder(root->left, p);
if (pre == p) suc = root;
pre = root;
inorder(root->right, p);
}
private:
TreeNode *pre = NULL, *suc = NULL;
};