【comfyui教程】Comfyui系列教程(二):ComfyUI文生图基础流程

前言

上一期带大家对comfyui的安装有了基本的认知,本期教大家搭建基础的文生图工作流。

首先我回忆一下在原先的SD WEBUI中进行文生图的时候用到了哪些功能包括了:

  1. **大模型:**这是整个流程的基础,通常指的是一个预训练的深度学习模型,用于生成或处理数据。

  2. **正向提示词:**这些是输入到大模型中的文本,用于引导模型生成或预测特定的输出。

  3. **反面提示词:**与正向提示词相对,这些是用于避免不希望的输出或引导模型避免某些特定的行为。

  4. **采样器:**在生成模型中,采样器决定了如何从模型的输出分布中选择最终的输出。

  5. **步数:**这通常指的是在生成过程中模型需要进行的迭代次数。

  6. **宽高:**在图像处理中,这指的是生成图像的尺寸。

  7. **VAE:**变分自编码器(Variational Autoencoder),一种生成模型,用于学习数据的潜在表示。

  8. **显示图像:**这是流程的最终输出,即生成的图像。

所有的AI设计工具,安装包、模型和插件,都已经整理好了,👇获取~

在这里插入图片描述

创建流程:

大模型加载器:

  1. **打开右键菜单:**首先,我们点击右键打开菜单。

  2. **选择新建节点:**在菜单中找到并选择“新建节点”选项。

  3. **浏览加载器列表:**在弹出的窗口中,我们会看到许多不同的加载器选项。

  4. **识别熟悉的加载器:**我们的目标是找到几个特定的加载器,包括“大模型加载器”、“VAE加载器”和“Lora加载器”。

  5. **添加大模型加载器:**我们将“大模型加载器”添加到场景中。我们也可以使用“Checkpoint Loader”

文本输入节点(CLIP文本编码器):

  1. 添加关键词输入节点:首先,我们需要添加一个用于输入关键词的节点。

  2. 选择CLIP文本编码器:在新建节点的选项中,我们选择“CLIP文本编码器”。这个节点没有

<think>好的,我现在需要帮助用户了解ComfyUI的安装、配置、使用教程以及特性说明。首先,我需要整理用户提供的引用内容,看看里面有哪些有用的信息。 根据引用[2],ComfyUI有两种安装方式,用户可能想知道原生安装包的具体步骤。引用[1]提到ComfyUI的目录结构,特别是custom_nodes的位置,这可能对插件安装有帮助。引用[3]则涉及云主机的配置和监听设置,还有学习路径的建议。引用[4]详细介绍了PhiPrompt节点和其他相关节点的功能,说明ComfyUI的工作流和插件特性。 接下来,我需要将这些信息组织成结构清晰的回答。安装部分要分步骤,包括环境准备、原生安装包安装、插件管理。配置方面需要说明启动参数、云主机设置。使用教程可以举工作流示例,比如引用[4]中的PhiPrompt节点应用。特性部分强调节点化界面、灵活性和扩展性。 还要注意用户可能遇到的常见问题,比如依赖项安装、路径错误,以及插件兼容性问题。此外,生成相关问题时要覆盖安装、配置、优化和应用场景,帮助用户深入探索。</think>### ComfyUI 安装配置与使用教程 #### 一、安装部署 1. **环境准备** 安装前需配置Python 3.8+和Git环境,推荐使用Windows 10/11系统[^2]。通过以下命令克隆仓库: ```bash git clone https://github.com/comfyanonymous/ComfyUI ``` 2. **原生安装包安装** - 下载官方提供的便携包(Portable Package),解压至目标路径 - 插件需放置在`ComfyUI_windows_portable\ComfyUI\custom_nodes`目录下[^1] - 首次启动会自动安装依赖项,若失败需手动运行: ```bash pip install -r requirements.txt ``` 3. **云主机配置** 修改`webui-user.bat`文件,添加`--listen`参数实现外部访问[^3]。 #### 、核心特性 1. **节点化工作流** 通过可视化节点组合实现AI绘画流程,例如: $$ \text{CR Text} \rightarrow \text{PhiPrompt} \rightarrow \text{DeepTranslator} \rightarrow \text{ShowText} $$ 每个节点可独立配置参数,如采样温度、设备类型等[^4]。 2. **灵活扩展性** - 支持自定义节点开发(如PhiPrompt节点支持多模型切换) - 插件系统兼容Stable Diffusion生态工具 #### 三、使用教程示例(文本润色工作流) ```python # 伪代码示例 workflow = [ CR_Text(input="原始描述"), LayerUtility_PhiPrompt(model='auto', temperature=0.7), DeepTranslator(target_lang="zh-CN"), ShowText() ] ``` 此流程可实现:文本输入→艺术化润色→多语言翻译→可视化输出 #### 四、常见问题排查 1. 依赖安装失败:检查Python版本与PATH环境变量 2. 插件加载异常:确认插件文件位于`custom_nodes`目录 3. 显存不足:启动时添加`--lowvram`参数
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值