一道简单背包题

题目信息

龙神有很多背包,每一个背包都有一个容积。但是这些背包的容积都恰好是一个数字V的整数倍,比如V, 2V等等。并且对于任意k ≥ 1,容积为k * V的背包都存在。
龙神有一些物品要装进背包,第i个物品占据p的体积。现在,龙神想选出一些物品,使得存在一个背包可以恰好放下这些物品,并且这个背包放满。
龙神想知道这样的取法有多少个,请你帮他算一算吧?由于取法很多,你只需要输出取法的末七位数即可(即对10000000取模)。

输入

第一行两个数n , V,分别表示物品数和背包体积的基数。
第二行n个数,分别表示每个物品的体积p。

输出

输出一行一个数,表示取法总数的末七位。

数据保证1 ≤ n , V ≤ 2000 ,1 ≤ p ≤ 100000

测试样例

4 5
1 2 3 2
3

解答

#include <iostream>
#include <vector>
#include <algorithm>

#define ll long long
using namespace std;
ll dp[2005][2005];
ll p[2010];

int main()
{
    //freopen("E://test.txt", "r", stdin);
    ll n, V;
    cin >> n >> V;
    dp[0][0] = 1;
    for (ll i = 1; i <= n; i++)
    {//dp[i][j]表示第i个物品此时背包的体积为j的情况数。
        cin >> p[i];
        for (ll j = 0; j < V; j++)
        {//什么都不选,直接转移上一个状态
            dp[i][j] = (dp[i - 1][j] + dp[i][j]) % 10000000;
        }

        for (ll j = 0; j < V; j++)
        {
            ll k = (j + p[i]) % V; //   考虑前i-1个物品选出体积为j的情况,取j + s[i]的余数,产生选当前物品与前i - 1个物品选体积为j的组合情况
            dp[i][k] = (dp[i - 1][j]+ dp[i][k])% 10000000;
        }
    }
    cout << dp[n][0] - 1 << endl;
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhj12399

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值