以AlexNet为例
一、卷积/池化尺寸计算
计算公式:
n’ = (n - k + 2p) / s + 1
其中n是输入feature map大小,k是卷积核大小,p是padding大小,s是步长
eg:输入feature map:227*227*3,卷积核11*11*3,步长4,数量96
(224 - 11) / 4 + 1 = 55
所以卷积后的feature map大小为:55*55*96
二、参数量和FLOPs运算次数
FLOPs运算:在卷积操作中,如3*3的一个卷积核一次计算中,有3*3次乘法,3*3-1次加法,把乘法和加法合在一起,共9次FLOPs运算(即乘法运算的次数)。
卷积核:Kn*Kw*Cout ,输入图像的channel个数为:Cin, 卷积后feature map大小为H*W*Cout
则该层的参数量为:
(Kn*Kw*Cin + 1)*Cout
FLOPs运算次数:
(Kn*Kw*Cin + 1)*Cout *H*W
eg: AlexNet第一个卷积为例:
参数个数为: (11*11*3+1)*96 = 34,944
FLOPs运算次数:(11*11*3+1)*96*55*55 = 105,705,600