题目大意:
一个人从左上走到右下,一个人从左下走到右上,两个人必须有一个点作为见面点,见面点的权值不能拿,问按照规则走,取得最大权值的和为多少。
思路:
首先要保证只有一个格子重合,那么只可能是以下两种情况:
1) A向右走,相遇后继续向右走,而B向上走,相遇后继续向上走
2) A向下走,相遇后继续向下走,而B向右走,相遇后继续向右走
接着枚举相遇的格子(i,j)即可,考虑四个方向的dp
#include<bits/stdc++.h>
using namespace std;
int mp[1001][1001],dp[5][1001][1001];
int read(int &n)
{
char ch=' ';int q=0,w=1;
for(;(ch!='-')&&((ch<'0')||(ch>'9'));ch=getchar());
if(ch=='-')w=-1,ch=getchar();
for(;ch>='0' && ch<='9';ch=getchar())q=q*10+ch-48;
n=q*w; return n;
}
int main()
{
int n,m;
read(n);read(m);
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
read(mp[i][j]);
for(int i=1;i<=n;i++)//从左上角跑到i,j
for(int j=1;j<=m;j++)
{
dp[1][i][j]=0;
if(i>1)
dp[1][i][j]=max(dp[1][i][j],dp[1][i-1][j]);
if(j>1)
dp[1][i][j]=max(dp[1][i][j],dp[1][i][j-1]);
dp[1][i][j]+=mp[i][j];
}
for(int i=n;i>=1;i--)//从右上角跑到i,j
for(int j=1;j<=m;j++)
{
dp[2][i][j]=0;
if(i<n)
dp[2][i][j]=max(dp[2][i][j],dp[2][i+1][j]);
if(j>1)
dp[2][i][j]=max(dp[2][i][j],dp[2][i][j-1]);
dp[2][i][j]+=mp[i][j];
}
for(int i=1;i<=n;i++)//从左下角跑到i,j
for(int j=m;j>=1;j--)
{
dp[3][i][j]=0;
if(i>1)
dp[3][i][j]=max(dp[3][i][j],dp[3][i-1][j]);
if(j<m)
dp[3][i][j]=max(dp[3][i][j],dp[3][i][j+1]);
dp[3][i][j]+=mp[i][j];
}
for(int i=n;i>=1;i--)//从右下角跑到i,j
for(int j=m;j>=1;j--)
{
dp[4][i][j]=0;
if(i<n)
dp[4][i][j]=max(dp[4][i][j],dp[4][i+1][j]);
if(j<m)
dp[4][i][j]=max(dp[4][i][j],dp[4][i][j+1]);
dp[4][i][j]+=mp[i][j];
}
int ans=0;
for(int i=2;i<n;i++)//因为重叠的点不计数,加上要保证他们从不同的方向进,不同的方向出
{
for(int j=2;j<m;j++)
{
ans=max(ans,dp[1][i-1][j]+dp[4][i+1][j]+dp[2][i][j-1]+dp[3][i][j+1]);
ans=max(ans,dp[1][i][j-1]+dp[4][i][j+1]+dp[2][i+1][j]+dp[3][i-1][j]);
}
}
printf("%d\n",ans);
}