题意
按时间顺序给了 n(1<=n<=5*10^5) 个国王的名字,找这样的国王排列的国王个数最多有多少个:
1、国王的名字必须是按照时间的先后顺序排列
2、前一个国王的名字的尾字母必须和后一个国王的名字首字母相同
3、第一个国王的首字母必须和最后一个国王的尾字母相同
做法分析
DP,按照国王出现的先后顺序划分阶段,也就是前 i 个国王划分阶段,状态这样定义:f[i][first][last]:前 i 个国王,首字母是 first,尾字母是 last,中间的国王必须按照上面的要求 2 排列的国王的最多个数。
这道题在状态转移的时候要特别注意状态的合法性
n*26 的时间复杂度,由于这里直接这样开数组存不下,刚开始想的是使用一个滚动数组,但是考虑到中间状态的合法性,于是就可以直接退化成 26*26 的二维数组,当然,怎么做还是看个人了,DP 主要就是阶段的划分和状态的定义,那样定义状态时肯定没问题的,只不过是在实现的细节上看怎么处理了
AC通道
参考代码
#include <cstdio>
#include <cstring>
#include <iostream>
using namespace std;
int f[26][26];
char s[20];
int main()
{
int n; scanf("%d", &n);
memset(f, 0, sizeof(f));
for(int i=1; i<=n; i++)
{
scanf("%s", s);
int len=(int)strlen(s);
int first=s[0]-'a', last=s[len-1]-'a';
for(int be=0; be<26; be++)
{
if(f[be][first]==0) continue;
f[be][last]=max(f[be][first]+len, f[be][last]);
}
f[first][last]=max(f[first][last], len);
}
int ans=0;
for(int i=0; i<26; i++)
ans=max(ans, f[i][i]);
printf("%d\n", ans);
return 0;
}