斯坦纳树问题入门

斯坦纳树问题入门

斯坦纳树问题:

  • 给定一个连通图,图上的顶点分为两类: 必要顶点和斯坦纳顶点
  • 现在,你需要找到一棵边权值和最小的树,覆盖掉所有的必要顶点,这样一棵树就叫做斯坦纳树。

在解决这个问题前,我们来理解一些概念:

1.三角形不等式:

在图G中对任意相邻的三个顶点x,y,z之间三条边构成的三角形如果满足任意两边之和不小于第三边,则称图G是满足三角形不等式的

2.在满足三角形不等式的完全图上,如果用MST作为斯坦纳树的近似解,近似比不超过2:

  • 强调一下是完全图,所以下面不要问哈密顿回路的边是哪来的。

技巧1:要证明cost(MST)<=2OPT,不妨证明能够找到一个生成树T使得cost(T)<=2OPT,相当于一个不等式放缩策略。
技巧2:如何找到生成树。我们会根据OPT的解来巧妙地构造一个生成树,使得这颗生成树的代价能够与2OPT进行比较,下面几幅图就能说明问题:

a. 一颗斯坦纳树,实心点是必要顶点,空心点是斯坦纳顶点,虚线边暂时不看。


b. 随意选择一个顶点作为起点,对这颗斯坦纳树进行dfs,dfs的顺序就会对应上图虚线边上的一个欧拉回路(因为dfs只会把每条边访问两次,以来一去),我们随便画出一个dfs可能的路径:
在这里插入图片描述
c. 按照dfs访问节点的先后顺序,连接必要顶点,就能得到一个必要顶点上的哈密顿回路:
在这里插入图片描述
很显然,这个哈密顿回路上的每条边和上图的虚线边有不重叠的对应关系。由于满足三角形不等式,哈密顿回路上的每一条边是不大于与之对应的一部分欧拉回路边的。因此整个哈密顿回路的代价是不大于整个欧拉回路的代价的。而整个欧拉回路的代价是2OPT。我们在哈密顿回路上任意去掉一条边就能得到一个生成树T,因此cost(T)<=cost(哈密顿回路)<=cost(欧拉回路)=2OPT

3.图的度量闭包

为了把一般的图上的斯坦纳树问题转化为上述问题,我们就要引入图的度量闭包的概念。设图G=(V,E)的度量闭包为G’,这个图G’是一个完全图(其顶点集合和G一样是V,但是边集不一样),G’上的边(u,v)的值被定义为G中u-v的最短路代价。下面看个例子:

图G:
#### 图G:
图G的度量闭包G’:
在这里插入图片描述
在求度量闭包的过程中,我们也能得到度量闭包G’ 中的边,比如(u,v),和原图G中一些边,即u到v的最短路,的一个对应关系,比如上例中就有如下对应关系:

  • e’1 <—> {e1}
  • e’2 <—> {e1,e4}
  • e’3 <—> {e1,e5}

图G的度量闭包G’是满足三角形不等式的

因为G’是完全图,且其中任意边都是原图中两端点的最短路,如果某两边之和小于第三边,就说明第三边不是最短路,因为可以被这两边取代且更短,矛盾。

斯坦纳树问题化为度量斯坦纳树问题

为了解决一般的斯坦纳树问题,我们可以先将图转化为其度量闭包,在度量闭包中利用最小生成树求出一个斯坦纳树近似解,然后按照边的对应关系,还原成原图G中的斯坦纳树近似解(还原后可能出现环,我们还可以删掉一些边,使得它成为一棵树)。

这样是能找到一个近似解了,但是我们怎么保证近似比呢?

这里有一个定理:在G’中斯坦纳树代价(记为OPT’)的值是不大于在G中斯坦纳树代价(记为OPT)的值的。简单解释就是因为G一定是G’的子图,并且G’中的边都还更小(如下图所示),所以G中斯坦纳树的代价一定大于等于G’中斯坦纳树代价的。所以大家自己整理一下大小关系就能发现该算法的近似比也是不大于2的了。

在这里插入图片描述

  • 4
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
### 回答1: Python实现最小斯坦纳树的代码可以使用Prim算法来解决。具体实现如下: ```python import sys # 为了方便表示图的邻接矩阵,使用无穷大代表不可达 inf = sys.maxsize def prim(graph): num_vertices = len(graph) key = [inf] * num_vertices # 记录顶点到最小生成树的最小权值边 parent = [None] * num_vertices # 记录最小生成树中顶点的父节点 visited = [False] * num_vertices # 记录顶点是否已访问 # 将第一个顶点设为起始顶点 key[0] = 0 for _ in range(num_vertices): # 找到未访问的顶点中键值最小的顶点 min_key = inf min_vertex = None for v in range(num_vertices): if not visited[v] and key[v] < min_key: min_key = key[v] min_vertex = v # 将找到的顶点标记为已访问 visited[min_vertex] = True # 更新顶点的最小权值边和父节点 for v in range(num_vertices): if not visited[v] and graph[min_vertex][v] < key[v]: key[v] = graph[min_vertex][v] parent[v] = min_vertex return parent def min_steiner_tree(graph, terminals): num_terminals = len(terminals) # 构建终端间的最短路径图 shortest_paths = [[inf] * num_terminals for _ in range(num_terminals)] for i in range(num_terminals): for j in range(num_terminals): shortest_paths[i][j] = dijkstra(graph, terminals[i], terminals[j]) # 在最短路径图上生成最小斯坦纳树 steiner_tree = [[inf] * num_terminals for _ in range(num_terminals)] for i in range(num_terminals): for j in range(num_terminals): if i == j: steiner_tree[i][j] = 0 else: for k in range(num_terminals): steiner_tree[i][j] = min(steiner_tree[i][j], shortest_paths[i][k] + shortest_paths[k][j]) # 使用Prim算法生成最小生成树 parent = prim(steiner_tree) return parent # 测试代码 graph = [[0, 7, 9, inf, inf, 14], [7, 0, 10, 15, inf, inf], [9, 10, 0, 11, inf, 2], [inf, 15, 11, 0, 6, inf], [inf, inf, inf, 6, 0, 9], [14, inf, 2, inf, 9, 0]] terminals = [0, 2, 4] parent = min_steiner_tree(graph, terminals) print(parent) ``` 此代码是使用Prim算法在最短路径图上生成最小斯坦纳树。输入的图是一个邻接矩阵,其中inf表示顶点之间不可达。terminals是终端节点的列表。输出是一个列表,表示每个顶点在生成的最小斯坦纳树中的父节点。 ### 回答2: Python实现最小斯坦纳树的代码可以使用图的最小生成树算法和动态规划的思想。 首先,我们可以使用Prim算法或Kruskal算法找到图的最小生成树,即连接所有顶点的最小权重的子图。 接下来,对于每一条边,我们通过遍历所有顶点集合的子集来找到最小斯坦纳树。子集的大小从1开始递增,直到包含所有顶点为止。 对于每个子集,我们通过动态规划的方法来找到连接子集中所有顶点的最小权重的边。 具体的实现步骤如下: 1. 使用Prim算法或Kruskal算法找到图的最小生成树,并保存最小生成树的边集合。 2. 对于每条边e in 最小生成树的边集合: 2.1 对于每个顶点集合V'(从1个元素开始递增到总顶点数): 2.1.1 如果V'包含边e的两个顶点,则忽略该顶点集合。 2.1.2 否则,遍历V'的所有子集V'': 2.1.2.1 如果V''中不包含边e的两个顶点,则忽略该子集。 2.1.2.2 否则,计算通过V''中的顶点连接边e的权重和,并更新最小权重值和对应的边。 3. 最后得到的最小权重值和对应的边即为最小斯坦纳树的结果。 以下是一个简单的Python代码示例: ```python import math def minimum_steiner_tree(graph): n = len(graph) inf = float('inf') dp = [[inf] * n for _ in range(1 << n)] for v in range(n): dp[1 << v][v] = 0 for S in range(1 << n): for v in range(n): for u in range(n): dp[S | (1 << u)][u] = min(dp[S | (1 << u)][u], dp[S][v] + graph[v][u]) return min(dp[-1]) # 测试代码 graph = [[0, 2, 3, math.inf], [2, 0, 1, 3], [3, 1, 0, 2], [math.inf, 3, 2, 0]] result = minimum_steiner_tree(graph) print("最小斯坦纳树的权重为:", result) ``` 权重矩阵graph表示的是无向图的邻接矩阵,math.inf表示无穷大,表示两个顶点之间没有边。代码中的结果为最小斯坦纳树的权重。 ### 回答3: Python最小斯坦纳树的代码可以通过使用Dijkstra算法和回溯法来实现。以下是一个可能的实现: ```python import sys def dijkstra(graph, src): n = len(graph) dist = [sys.maxsize] * n dist[src] = 0 visited = [False] * n for _ in range(n): u = min_distance(dist, visited) visited[u] = True for v in range(n): if graph[u][v] > 0 and not visited[v] and dist[v] > dist[u] + graph[u][v]: dist[v] = dist[u] + graph[u][v] return dist def min_distance(dist, visited): min_dist = sys.maxsize min_index = -1 for v in range(len(dist)): if not visited[v] and dist[v] < min_dist: min_dist = dist[v] min_index = v return min_index def tsp_solver(graph, start): n = len(graph) tsp_path = None tsp_cost = sys.maxsize def tsp_recursion(curr_node, visited, current_path, current_cost): nonlocal tsp_path, tsp_cost if len(visited) == n: if graph[curr_node][start] > 0: current_cost += graph[curr_node][start] current_path.append(start) if current_cost < tsp_cost: tsp_cost = current_cost tsp_path = current_path.copy() current_path.pop() current_cost -= graph[curr_node][start] return for next_node in range(n): if next_node not in visited: new_path = current_path.copy() new_path.append(next_node) tsp_recursion(next_node, visited + [next_node], new_path, current_cost + graph[curr_node][next_node]) tsp_recursion(start, [start], [start], 0) return tsp_path, tsp_cost def min_steiner_tree(graph, terminals): n = len(graph) t = len(terminals) dp = [[sys.maxsize] * t for _ in range(1 << t)] # 动态规划表格 path = [[None] * t for _ in range(1 << t)] # 记录路径 for i in range(t): dist = dijkstra(graph, terminals[i]) for j in range(t): dp[1 << i][j] = dist[terminals[j]] for i in range(1 << t): for j in range(t): if dp[i][j] == sys.maxsize: continue for k in range(t): if (i >> k) & 1 == 0 and dp[i][j] + dp[1 << k | i][k] < dp[1 << k | i][k]: dp[1 << k | i][k] = dp[i][j] + dp[1 << k | i][k] path[1 << k | i][k] = j min_cost = sys.maxsize min_path = None for i in range(t): if dp[(1 << t) - 1][i] < min_cost: min_cost = dp[(1 << t) - 1][i] min_path = [i] while len(min_path) < t: last_node = min_path[-1] min_path.append(path[(1 << t) - 1][last_node]) min_path = [terminals[i] for i in min_path] tsp_path, tsp_cost = tsp_solver(graph, terminals[0]) min_cost += tsp_cost min_path += tsp_path[1:] return min_path, min_cost # 测试例子 graph = [ [0, 2, 3, 0, 0], [2, 0, 0, 4, 0], [3, 0, 0, 1, 3], [0, 4, 1, 0, 2], [0, 0, 3, 2, 0] ] terminals = [1, 2, 3] path, cost = min_steiner_tree(graph, terminals) print("最小斯坦纳树路径:", path) print("最小斯坦纳树总成本:", cost) ``` 这段代码通过调用`min_steiner_tree`函数来计算给定图和终端点集合的最小斯坦纳树的路径和成本。`graph`代表图的邻接矩阵,`terminals`代表终端点的列表。最后将得到的最小斯坦纳树路径和成本打印出来。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值