DP 分治 最大字段

首先用分治法:
#include "stdio.h"
int MaxSum(int a[],int left,int right)
{
int i,sum=0;
if(left==right)
sum=a[left]>0?a[left]:0;
else
{
int center=(left+right)/2;
int leftsum=MaxSum(a,left,center);
int rightsum=MaxSum(a,center+1,right);
int s1=0,s2=0,lefts=0,rights=0;

for(i=center;i>=left;i--)
{
lefts+=a[i];
if(lefts>s1)
s1=lefts;
}

for(i=center+1;i<=right;i++)
{
rights+=a[i];
if(rights>s2)
s2=rights;
}

sum=s1+s2;
if(sum<leftsum) sum=leftsum;
if(sum<rightsum) sum=rightsum;
}
return sum;
}

void main()
{
int i,s=0;
int a[6];

printf("请输入6个整数:");
for(i=0;i<6;i++)
scanf("%d",&a[i]);

s=MaxSum(a,1,6);
printf("最大子段和为:%d",s);
}

 

然后是动态规划方法:
#include "stdio.h"
int MaxSum(int n,int a[])
{
int i,sum=0,b=0;
for(i=1;i<=n;i++)
{
if(b>0)
b+=a[i];
else
b=a[i];
if(b>sum)
sum=b;
}
return sum;
}

void main()
{
int i,s=0;
int a[6];

printf("请输入6个整数:");
for(i=0;i<6;i++)
scanf("%d",&a[i]);

s=MaxSum(6,a);
printf("最大子段和为:%d",s);
}

 

 

 

 

#include <stdio.h>  
 
int FindGreatestSecSum(int *a,int len)  
{     
    int sum = 0, max = 0;  
    for(int i = 0; i < len; i++)  
    {  
       if(sum <= 0)  
          sum = a[i];  
       else   
          sum += a[i];  
       if(sum > max)  
            max = sum;  
    }  
    return max;  
}  
 
int main()  
{  
   int a[8] = {4,-3,5,-2,-1,2,6,-2};  
   printf("%d/n", FindGreatestSecSum(a,sizeof(a)/sizeof(int)));  
   return 0;  

#include <stdio.h>

int FindGreatestSecSum(int *a,int len)
{  
    int sum = 0, max = 0;
    for(int i = 0; i < len; i++)
    {
       if(sum <= 0)
          sum = a[i];
       else
          sum += a[i];
       if(sum > max)
            max = sum;
    }
    return max;
}

int main()
{
   int a[8] = {4,-3,5,-2,-1,2,6,-2};
   printf("%d/n", FindGreatestSecSum(a,sizeof(a)/sizeof(int)));
   return 0;

为了方便大家理解,这里转载一篇别人的解法,看了这篇文章之后,我对这个问题

的理解更加清晰了,在此向作者表示感谢。

最大子段和问题的动态规划求解

1.  基本原理

     设数组为a[k],1≤k≤n,最大子段和X 被定义为:

                                                             j
                                   X =     max     {  ∑a[k] }
                                           1≤i≤j ≤n    k=i
                                      
                                          
                                             

     不妨设:

                                                                j     
                                   b[j ]  =  max     {  ∑ a[k]}
                                              1 ≤j ≤n    k=m
                                                                                   
                                             

     其中m 是可变的。注意:a[j]必须是b[j]这个最大局部受限子段和所对应子段的最右端,

好好理解此处j 和b[j]的含义是整个算法的关键!

     根据b[j]和X 的定义,不难发现:

                                       X   =    max b[j ]
                                                1≤j ≤n

     另一方面,根据b[j]的定义,可以看出:

 当b[j-1]>0 时,无论a[j]为何值,b[j]=b[j-1]+a[j];

 当b[j-1]≤0 时,无论a[j]为何值,b[j]=a[j];

     所以有:                    
                             b[j ]  =    max   { b[j  -1] +a[j ],a[j ] }
                                          1≤j ≤n

2.  具体实例

                     k            1           2           3           4

                    a[k]          3           -4          2          10

                    b[k]          3          -1           2          12

     其中:b[1]=a[1],b[2]=b[1]+a[2],b[3]=a[3],b[4]=b[3]+a[4] ;因此,对于数组a 而言,

最大子段和为b[4],即X=12 。

3.  编程实现

     略,针对数组a 进行一遍扫描即可。算法实现的时间复杂度只有O(n)。

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值