SPFA(Shortest Path Faster Algorithm)是Bellman-Ford算法的一种队列实现,减少了不必要的冗余计算。
算法大致流程是用一个队列来进行维护。 初始时将源加入队列。 每次从队列中取出一个元素,并对所有与他相邻的点进行松弛,若某个相邻的点松弛成功,则将其入队。 直到队列为空时算法结束。
这个算法,简单的说就是队列优化的bellman-ford,利用了每个点不会更新次数太多的特点发明的此算法
SPFA——Shortest Path Faster Algorithm,它可以在O(kE)的时间复杂度内求出源点到其他所有点的最短路径,可以处理负边。SPFA的实现甚至比Dijkstra或者Bellman_Ford还要简单:
设Dist代表S到I点的当前最短距离,Fa代表S到I的当前最短路径中I点之前的一个点的编号。开始时Dist全部为+∞,只有Dist[S]=0,Fa全部为0。
维护一个队列,里面存放所有需要进行迭代的点。初始时队列中只有一个点S。用一个布尔数组记录每个点是否处在队列中。
每次迭代,取出队头的点v,依次枚举从v出发的边v->u,设边的长度为len,判断Dist[v]+len是否小于Dist[u],若小于则改进Dist[u],将Fa[u]记为v,并且由于S到u的最短距离变小了,有可能u可以改进其它的点,所以若u不在队列中,就将它放入队尾。这样一直迭代下去直到队列变空,也就是S到所有的最短距离都确定下来,结束算法。若一个点入队次数超过n,则有负权环。
SPFA 在形式上和宽度优先搜索非常类似,不同的是宽度优先搜索中一个点出了队列就不可能重新进入队列,但是SPFA中一个点可能在出队列之后再次被放入队列,也就是一个点改进过其它的点之后,过了一段时间可能本身被改进,于是再次用来改进其它的点,这样反复迭代下去。设一个点用来作为迭代点对其它点进行改进的平均次数为k,有办法证明对于通常的情况,k在2左右。
SPFA算法(Shortest Path Faster Algorithm),也是求解单源最短路径问题的一种算法,用来解决:给定一个加权有向图G和源点s,对于图G中的任意一点v,求从s到v的最短路径。 SPFA算法是Bellman-Ford算法的一种队列实现,减少了不必要的冗余计算,他的基本算法和Bellman-Ford一样,并且用如下的方法改进: 1、第二步,不是枚举所有节点,而是通过队列来进行优化 设立一个先进先出的队列用来保存待优化的结点,优化时每次取出队首结点u,并且用u点当前的最短路径估计值对离开u点所指向的结点v进行松弛操作,如果v点的最短路径估计值有所调整,且v点不在当前的队列中,就将v点放入队尾。这样不断从队列中取出结点来进行松弛操作,直至队列空为止。 2、同时除了通过判断队列是否为空来结束循环,还可以通过下面的方法: 判断有无负环:如果某个点进入队列的次数超过V次则存在负环(SPFA无法处理带负环的图)。
SPFA算法有两个优化算法 SLF 和 LLL: SLF:Small Label First 策略,设要加入的节点是j,队首元素为i,若dist(j)<dist(i),则将j插入队首,否则插入队尾。 LLL:Large Label Last 策略,设队首元素为i,队列中所有dist值的平均值为x,若dist(i)>x则将i插入到队尾,查找下一元素,直到找到某一i使得dist(i)<=x,则将i出对进行松弛操作。 SLF 可使速度提高 15 ~ 20%;SLF + LLL 可提高约 50%。 在实际的应用中SPFA的算法时间效率不是很稳定,为了避免最坏情况的出现,通常使用效率更加稳定的Dijkstra算法。
const int INF = 999999;
int map[MAXN][MAXN]; //map[i,j]为初始输入的i到j的距离,未知的map[i,j]=INF;
int dis[MAXN];
char vst[MAXN];
// 参数n表示结点数,s表示源点
int SPFA(int n, int s)
{
// pri是队列头结点,end是队列尾结点
int i, pri, end, p, t;
memset(vst, 0, sizeof(vst));
for(int i=0; i<MAXN; ++i)
Q[i] = 0;
for (i=0; i<n; i++)
dis[i] = INF;
dis[s] = 0;
vst[s] = 1;
Q[0] = s; pri = 0; end = 1;
while (pri < end)
{
p = Q[pri];
for (i=0; i<n; ++i)
{
//更新dis
if (dis[p]+map[p][i] < dis[i])
{
dis[i] = dis[p]+map[p][i];
if (!vst[i]) //未在队列中
{
Q[end++] = i;
vst[i] = 1;
}
}
}
vst[p] = 0; // 置出队的点为未标记
pri++;
}
return 1;
}