R语言使用cph函数和rcs函数构建限制性立方样条cox回归模型、使用anova函数进行方差分析通过p值确认指定连续变量和风险值HR之间是否存在非线性关系

本文介绍了在R语言中如何使用cph和rcs函数构建限制性立方样条Cox回归模型,以分析连续变量与风险值HR之间的非线性关系。通过anova函数进行方差分析,利用p值判断年龄与死亡风险的非线性关联。文章讨论了样条分析相对于多项式回归的优势,并提供了相关实例和数据处理步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值