DenseNet学习与实现

《Densely Connected Convolutional Networks》提出了DenseNet,它用前馈的方式连接每一层与所有其他层,L层网络共有 L ( L + 1 ) 2 \frac{L(L+1)}{2} 2L(L+1)条直接连接。DenseNet有几个优势:可以减轻梯度消失问题、强化特征传播、鼓励特征再利用、实质地减少参数数量。
在这里插入图片描述

动机

随着卷积神经网络变得越来越深,一个新的研究问题出现了:当输入信息(梯度信息)经过许多层之后,在它到达网络末尾(开端)时,它会消失和“洗净”。一种方式是:创建从早期层到后期层的短路径。
作者提出了一种架构:为了保证网络之间信息流动最大化,将所有层直接相互连接起来。

DenseNets

在这里插入图片描述

Dense connectivity

l t h l^{th} lth层接收所有之前层的特征图, x 0 , . . . , x l − 1 x_0, ..., x_{l-1} x0,...,xl1,作为输入:
x l = H l ( [ x 0 , x 1 , . . . , x l 1 ] ) x_l = H_l([x_0, x_1, ..., x_{l_1}]) xl=Hl([x0,x1,...,xl1])
其中 [ x 0 , x 1 , . . . , x l 1 ] [x_0, x_1, ..., x_{l_1}] [x0,x1,...,xl1]表示第 0 0 0层到第 l − 1 l-1 l1层产生的特征图的连结(合并)。
大量的连接并未增加任何超参数。

Composite function

H l ( . ) H_l(.) Hl(.)由三部分组成:BN,随后跟一个ReLU和一个3x3 Conv。

Pooling layers

将blocks之间的层定义为transition layers,它包含:一个BN层、一个1x1 Conv和一个2x2 average pooling。

Growth rate

如果函数 H l H_l Hl产生 k k k个特征图,那么第 l t h l^{th} lth层有 k 0 + k x ( l − 1 ) k_0 + k x (l - 1) k0+kx(l1)个输入特征图,其中 k 0 k_0 k0是输入层的通道数。将超参数 k k k定义为网络的growth rate。将这些特征图视为网络的全局状态。每层加入自己的 k k k个特征图到网络全局状态。growth rate控制每层贡献多少新信息给这个网络全局状态。

Bottleneck layers

在3x3 Conv之前引入1x1 Conv可以减少输入特征图的数量。

Compression

为了提高模型的简洁性,可以在transition layers减少特征图的数量。

架构

注意事项:原始的DenseNet实现可能会存在内存不足的问题。为了减少GPU的内存消耗,可以使用DenseNets的内存高效实现版本。见《Memory-efficient implementation of densenets》。

在这里插入图片描述

Discussion

DenseNet与ResNets很相似,区别之一是用连结(合并)替代了加法运算。实现同样的精度,DenseNet-BC只需要ResNets参数的1/3。
dense convolutional networks精度提升的一个解释是单独的层通过更短的连接接收了来自损失函数的额外监督。

实现

https://github.com/liuzhuang13/DenseNet
https://github.com/shicai/DenseNet-Caffe

以下代码来自https://github.com/liuzhuang13/DenseNetCaffe

from __future__ import print_function
from caffe import layers as L, params as P, to_proto
from caffe.proto import caffe_pb2
import caffe

def bn_relu_conv(bottom, ks, nout, stride, pad, dropout):
    batch_norm = L.BatchNorm(bottom, in_place=False, param=[dict(lr_mult=0, decay_mult=0), dict(lr_mult=0, decay_mult=0), dict(lr_mult=0, decay_mult=0)])
    scale = L.Scale(batch_norm, bias_term=True, in_place=True, filler=dict(value=1), bias_filler=dict(value=0))
    relu = L.ReLU(scale, in_place=True)
    conv = L.Convolution(relu, kernel_size=ks, stride=stride, 
                    num_output=nout, pad=pad, bias_term=False, weight_filler=dict(type='msra'), bias_filler=dict(type='constant'))
    if dropout>0:
        conv = L.Dropout(conv, dropout_ratio=dropout)
    return conv

def add_layer(bottom, num_filter, dropout):
    conv = bn_relu_conv(bottom, ks=3, nout=num_filter, stride=1, pad=1, dropout=dropout)
    concate = L.Concat(bottom, conv, axis=1)
    return concate

def transition(bottom, num_filter, dropout):
    conv = bn_relu_conv(bottom, ks=1, nout=num_filter, stride=1, pad=0, dropout=dropout)
    pooling = L.Pooling(conv, pool=P.Pooling.AVE, kernel_size=2, stride=2)
    return pooling

#change the line below to experiment with different setting
#depth -- must be 3n+4
#first_output -- #channels before entering the first dense block, set it to be comparable to growth_rate
#growth_rate -- growth rate
#dropout -- set to 0 to disable dropout, non-zero number to set dropout rate
def densenet(data_file, mode='train', batch_size=64, depth=40, first_output=16, growth_rate=12, dropout=0.2):
    data, label = L.Data(source=data_file, backend=P.Data.LMDB, batch_size=batch_size, ntop=2, 
              transform_param=dict(mean_file="/home/zl499/caffe/examples/cifar10/mean.binaryproto"))

    nchannels = first_output
    model = L.Convolution(data, kernel_size=3, stride=1, num_output=nchannels,
                        pad=1, bias_term=False, weight_filler=dict(type='msra'), bias_filler=dict(type='constant'))

    N = (depth-4)/3
    for i in range(N):
        model = add_layer(model, growth_rate, dropout)
        nchannels += growth_rate
    model = transition(model, nchannels, dropout)

    for i in range(N):
        model = add_layer(model, growth_rate, dropout)
        nchannels += growth_rate
    model = transition(model, nchannels, dropout)

    for i in range(N):
        model = add_layer(model, growth_rate, dropout)
        nchannels += growth_rate


    model = L.BatchNorm(model, in_place=False, param=[dict(lr_mult=0, decay_mult=0), dict(lr_mult=0, decay_mult=0), dict(lr_mult=0, decay_mult=0)])
    model = L.Scale(model, bias_term=True, in_place=True, filler=dict(value=1), bias_filler=dict(value=0))
    model = L.ReLU(model, in_place=True)
    model = L.Pooling(model, pool=P.Pooling.AVE, global_pooling=True)
    model = L.InnerProduct(model, num_output=10, bias_term=True, weight_filler=dict(type='xavier'), bias_filler=dict(type='constant'))
    loss = L.SoftmaxWithLoss(model, label)
    accuracy = L.Accuracy(model, label)
    return to_proto(loss, accuracy)

def make_net():

    with open('train_densenet.prototxt', 'w') as f:
        #change the path to your data. If it's not lmdb format, also change first line of densenet() function
        print(str(densenet('/home/zl499/caffe/examples/cifar10/cifar10_train_lmdb', batch_size=64)), file=f)

    with open('test_densenet.prototxt', 'w') as f:
        print(str(densenet('/home/zl499/caffe/examples/cifar10/cifar10_test_lmdb', batch_size=50)), file=f)

def make_solver():
    s = caffe_pb2.SolverParameter()
    s.random_seed = 0xCAFFE

    s.train_net = 'train_densenet.prototxt'
    s.test_net.append('test_densenet.prototxt')
    s.test_interval = 800
    s.test_iter.append(200)

    s.max_iter = 230000
    s.type = 'Nesterov'
    s.display = 1

    s.base_lr = 0.1
    s.momentum = 0.9
    s.weight_decay = 1e-4

    s.lr_policy='multistep'
    s.gamma = 0.1
    s.stepvalue.append(int(0.5 * s.max_iter))
    s.stepvalue.append(int(0.75 * s.max_iter))
    s.solver_mode = caffe_pb2.SolverParameter.GPU

    solver_path = 'solver.prototxt'
    with open(solver_path, 'w') as f:
        f.write(str(s))

if __name__ == '__main__':

    make_net()
    make_solver()
  • 1
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值