n-皇后问题是指将 n 个皇后放在 n∗n 的国际象棋棋盘上,使得皇后不能相互攻击到,即任意两个皇后都不能处于同一行、同一列或同一斜线上。
现在给定整数n,请你输出所有的满足条件的棋子摆法。
输入格式
共一行,包含整数n。
输出格式
每个解决方案占n行,每行输出一个长度为n的字符串,用来表示完整的棋盘状态。
其中”.”表示某一个位置的方格状态为空,”Q”表示某一个位置的方格上摆着皇后。
每个方案输出完成后,输出一个空行。
数据范围
1≤n≤9
输入样例:
4
输出样例:
.Q..
...Q
Q...
..Q.
..Q.
Q...
...Q
.Q..
此题思想与数字排列类似,在爆搜的基础上加上条件的剪枝搜索。
代码:
#include<iostream>
using namespace std;
const int N=20;
int n;
char path[N][N];
bool dg[N],udg[N],col[N];
void dfs(int u)
{
if(n==u)
{
for(int i=0;i<n;i++) puts(path[i]);
puts("");
return;
}
for(int i=0;i<n;i++)
if(!col[i]&&!dg[i+u]&&!udg[i-u+n])
{
path[u][i]='Q';
col[i]=dg[i+u]=udg[-u+i+n]=true;
dfs(u+1);
col[i]=dg[i+u]=udg[i-u+n]=false;
path[u][i]='.';
}
}
int main()
{
cin >> n;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)\
path[i][j]='.';
dfs(0);
return 0;
}
第二种搜索方法
#include<iostream>
using namespace std;
const int N=20;
int n;
char path[N][N];
bool row[N],col[N],dg[N],udg[N];
void dfs(int x,int y,int s)
{
if(y==n)
{
x++;
y=0;
}
if(x==n)
{
if(s==n)
{
for(int i=0;i<n;i++) puts(path[i]);
printf("\n");
}
return;
}
//不放皇后
dfs(x,y+1,s);
//放皇后
if(!row[x]&&!col[y]&&!dg[x+y]&&!udg[x-y+n])
{
path[x][y]='Q';
row[x]=col[y]=dg[x+y]=udg[x-y+n]=true;
dfs(x,y+1,s+1);
row[x]=col[y]=dg[x+y]=udg[x-y+n]=false;
path[x][y]='.';
}
}
int main()
{
cin >>n;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
path[i][j]='.';
dfs(0,0,0);
return 0;
}