修改网络模型表述文件
F:\caffe0\caffe-windows\examples\mnist\lenet_train_test.prototxt
目前主要修改训练集和测试集的路径 注意路径的斜杠表示
name: "LeNet"
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TRAIN
}
transform_param {
scale: 0.00390625
}
data_param {
source: "F:/caffe0/caffe-windows/examples/mnist/LMDB/train_lmdb"
batch_size: 64
backend: LMDB
}
}
layer {
name: "mnist"
type: "Data"
top: "data"
top: "label"
include {
phase: TEST
}
transform_param {
scale: 0.00390625
}
data_param {
source: "F:/caffe0/caffe-windows/examples/mnist/LMDB/test_lmdb"
batch_size: 100
backend: LMDB
}
}
修改超参数
主要修改网络模型描述文件的路径
训练输出参数
此处选择CPU
# The train/test net protocol buffer definition
net: "F:/caffe0/caffe-windows/examples/mnist/lenet_train_test.prototxt"
# test_iter specifies how many forward passes the test should carry out.
# In the case of MNIST, we have test batch size 100 and 100 test iterations,
# covering the full 10,000 testing images.
test_iter: 100
# Carry out testing every 500 training iterations.
test_interval: 500
# The base learning rate, momentum and the weight decay of the network.
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
# The learning rate policy
lr_policy: "inv"
gamma: 0.0001
power: 0.75
# Display every 100 iterations
display: 100
# The maximum number of iterations
max_iter: 10000
# snapshot intermediate results
snapshot: 5000
snapshot_prefix: "F:/caffe0/caffe-windows/examples/mnist/models/" 注意/斜杠
# solver mode: CPU or GPU
solver_mode: CPU
开始训练模型
新建批处理文件 train.bat
F:\caffe0\caffe-windows\tools\caffe.cpp
第一项为可执行文件路径
第二项为 train 或者test
第三项为超参数文件的路径
%train 训练数据%
F:\caffe0\caffe-windows\Build\x64\Debug\caffe.exe train -solver=F:/caffe0/caffe-windows/examples/mnist/lenet_solver.prototxt