leetcode 62 Unique Paths 62 Unique Paths 62 Unique Paths 【走格子 简单dp】

89 篇文章 0 订阅
44 篇文章 1 订阅

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

How many possible unique paths are there?


Above is a 7 x 3 grid. How many possible unique paths are there?

Note: m and n will be at most 100.

Example 1:

Input: m = 3, n = 2
Output: 3
Explanation:
From the top-left corner, there are a total of 3 ways to reach the bottom-right corner:
1. Right -> Right -> Down
2. Right -> Down -> Right
3. Down -> Right -> Right

Example 2:

Input: m = 7, n = 3
Output: 28

基本上就是裸的dp

class Solution {
public:
    int uniquePaths(int m, int n) {
        int num[109][109];
        for(int i=0;i<=m;i++)
            num[i][0]=1;
        for(int i=0;i<=n;i++)
            num[0][i]=1;
        for(int i=1;i<m;i++)
            for(int j=1;j<n;j++)
                num[i][j]=num[i-1][j]+num[i][j-1];
        return num[m-1][n-1];
    }
};

A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below).

The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked 'Finish' in the diagram below).

Now consider if some obstacles are added to the grids. How many unique paths would there be?

An obstacle and empty space is marked as 1 and 0 respectively in the grid.

Note: m and n will be at most 100.

Example 1:

Input:
[
  [0,0,0],
  [0,1,0],
  [0,0,0]
]
Output: 2
Explanation:
There is one obstacle in the middle of the 3x3 grid above.
There are two ways to reach the bottom-right corner:
1. Right -> Right -> Down -> Down
2. Down -> Down -> Right -> Right

有障碍的dp 有障碍的地方变成0 注意边界处理

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) {
        int m=obstacleGrid.size();
        int n=obstacleGrid[0].size();
       // printf("m=%d,n=%d\n",m,n);
        int num[109][109];
        bool flag=0;
        for(int i=0;i<m;i++)
            if(obstacleGrid[i][0]==1||flag)
                num[i][0]=0,flag=1;
            else
                num[i][0]=1;
        flag=0;
        for(int i=0;i<n;i++)
            if(obstacleGrid[0][i]==1||flag)
                num[0][i]=0,flag=1;
            else
                num[0][i]=1;
        for(int i=1;i<m;i++)
            for(int j=1;j<n;j++)
                if(obstacleGrid[i][j]==0)
                    num[i][j]=num[i-1][j]+num[i][j-1];
                else
                    num[i][j]=0;
        return num[m-1][n-1];

    }
};

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

Example:

Input:
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.

求路径最小和

(侮辱智商

class Solution {
public:
    int minPathSum(vector<vector<int>>& grid) {
        int dp[1000][1000];
        int m=grid.size();
        int n=grid[0].size();
        dp[0][0]=grid[0][0];
        for(int i=1;i<m;i++)
            dp[i][0]=grid[i][0]+dp[i-1][0];
        for(int i=1;i<n;i++)
            dp[0][i]=grid[0][i]+dp[0][i-1];
        for(int i=1;i<m;i++)
            for(int j=1;j<n;j++)
                dp[i][j]=min(dp[i-1][j],dp[i][j-1])+grid[i][j];
        return dp[m-1][n-1];
    }
};

这几个题给我一种leetcode 中等题不过如此的感觉

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值