- 博客(19)
- 收藏
- 关注
原创 Agent是不是各种prompt的堆叠?
可以明确说。llm是大模型的核心,推理决策都是靠大模型,虽然agent用到很多prompt来处理规划的子任务,但agent的作用不单单是prompt,不是各种prompt的堆叠。Agent与llm的一个主要能力区别在于,而llm可以给出对于执行一个动作的描述(text-only),但不会直接去执行动作(o3之类的模型除外,o3通过强化学习训练了也具备了交错执行think-action迭代的能力)。
2025-05-14 13:05:51
433
原创 2025年Agent发展趋势与市场机会:AI时代的下一波浪潮
随着Agent智能化程度的提高,一系列伦理问题开始凸显。最突出的争议集中在责任归属问题上:当自主Agent做出错误决策导致损失时,责任应由开发者、运营方还是算法本身承担?AI合规涉及确保AI系统遵守所有相关法律、法规和道德标准,确保AI工具不会以非法、歧视性、欺骗性或有害的方式使用。责任归属问题已成为AI伦理讨论的焦点,早在2017年欧洲议会就曾提出'电子人格'的概念,但2024年欧盟AI法案采取了基于风险的监管方法,尚未在法律层面确立AI的'数字人格',全球对此问题仍未形成共识。
2025-05-08 22:16:42
1182
原创 AI时代我们应该具备的3C能力
在AI快速变化的当下,Curiosity是我们持续追逐新技术、新变化的催化剂,Creativity是我们扩展能力边界,开创新事业的驱动力,而compassion是我们思考如何与未来相处的平衡器。这三种能力中,compassion能力或许是三个能力中我们最欠缺的,但这个能力一定程度上可能取决我们生活的社会和环境是怎样塑造的,而与自身无关。
2025-05-02 20:55:28
1285
原创 图像生成mcp server的自定义实现
以上就是对开发一个图像生成 mcp server的记录和思考,欢迎大家交流,项目目前支持在cursor和windsurf中配置使用,如果有需要请到GitHub进行clone使用。
2025-05-01 15:55:32
819
原创 o3原生Agentic能力会重塑Agent技术范式吗?
o3的原生agentic能力代表了Agent技术发展的一个重要里程碑。通过将规划、推理和工具使用能力内化到模型本身,o3开创了一种新的Agent开发范式,从外部编排转向内生决策,使得agent的核心能力进一步向模型"靠拢",具备更强的agent端到端处理能力。然而目前的o3仍然不是agent的终极解决方案,存在'工具虚假调度'(这可能是强化学习的奖励劫持导致的),幻觉率升高,成本高昂等问题,而且模型的可靠性和能力范围是否可以扩展到multi-agent,均需要在现实场景中进行更多验证。
2025-04-27 16:37:43
1031
翻译 通向AGI的规划和展望 - Sam Altman ,the CEO of OpenAI
通向AGI的规划和展望 - Sam Altman ,the CEO of OpenAI
2023-02-25 21:03:23
648
原创 设计模型之Visitor模式-图书馆管理系统应用C++实现
今天看到<<软件设计师>>面向对象第七章讲到几种设计模式,其中一种为Visitor模式。这种设计模式通过访问者对象的建立,在访问过程中将访问者作为参数传到被访问对象的函数中,实现了有选择性的访问不同类的资源。其中有一个Visitor模式设计的应用,参考书中的代码,在本地测试跑了一下。//// library_visitor.cpp// data_structure/*某图书管理系统中管理者两种类型的文献:图书和论文。现在要求统计所有馆藏文献的总页码(假设图书馆中有
2021-04-04 14:36:41
732
4
原创 Python实现自定义队列
项目中需要读取一个pickle数据文件,pickle文件存储的是按行保存的文本,需要调用编码模型分别对每一条文本进行编码,然后使用numpy数组保存编码后的向量。由于模型每次只能输入一定batch size大小的数据,所以需要对数据继续分割后再输入模型编码embedding,可以直接加载整个文件,通过batch size来分割整个文件数组。但是如果文件很大,这样的加载方式可能会导致内存溢出。因此考虑对文件进行单行读取,使用一个队列来接受读取的数据,当读取的行数等于batch size时,就将这个批次的数据送
2021-03-31 14:22:07
938
2
原创 matplotlib绘制函数、导数图像
# -*- coding: utf-8 -*- import matplotlib.pyplot as plt import numpy as np # 确定坐标轴 plt.xlim((-3, 3)) plt.ylim((-70, 150)) # 确定函数的x,y点 # 原函数 x1 = np.linspace(-3,3.5,100) def y...
2021-03-08 17:25:57
6405
2
原创 使用ONNX将Pytorch转为Tensorflow的使用尝试
使用ONNX将Pytorch转为Tensorflow参考官方教程将Pytorch通过ONNX转为tensorflow。from onnx_test import resolutionimport numpy as npimport osfrom torch import nnimport torch.utils.model_zoo as model_zooimport torch.onnxfrom onnx_tf.backend import prepareimport onnx
2021-03-07 20:14:07
1967
5
原创 强化学习-Q-learning FrozenLake-V0 实现
DQN算法是QLearning算法的延伸,在大多数实际场景中,Q值表的状态空间会很大,构建Q值表的方式就不太行得通,因此通过引入神经网络来学习拟合状态空间,解决状态空间过大而不方便维护更新Q值表的问题。首先定义一个Agent类,sample函数就是使用epsilon-greedy的采样方法,predict则是根据当前的观察值来预测输出的动作,learn就是通过输入当前的观察值obs,当前的动作action,奖励reward以及下一个时刻的观察值next_obs来更新Q值表。代码:class Q
2020-06-26 18:33:12
4650
2
原创 LeetCode 62. Unique Paths 机器人走格子-动态规划记录
题目为机器人从左上角走到右下角,不重复的路径有多少条。使用动态规划求解,分析如下:设这个格子的大小为m*n,终点位置(右下角finish)的坐标final = (m-1,n-1)。而final的上一步只有两种可能,即从左边的(m-2,n-1)向右走一步,或者从上边的(m-1,n-2)向下走一步,而且这两种方式不可能重复,只要把到达(m-2,n-1)和(m-1,n-2)的路径加起...
2020-05-03 23:07:15
877
原创 Coin Change(硬币最少组合) python的动态规划实现记录
题目为给定不同面值的n种硬币,面值加起来等于一个特定的数m,求最少需要多少枚硬币实现。这个问题如果使用暴力求解,需要穷举所有可以加起来等m的组合,时间复杂度为O(m^n)。def coin_27_plus_1(x): coins = [2,5,7] len_s = [x//coin for coin in coins] sum = 0 times = 0...
2020-05-02 20:52:43
1214
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人