数据分析与挖掘实战-电商产品评论数据情感分析

本文通过深度学习和主题模型分析了京东美的热水器的用户评论,挖掘消费者情感倾向和产品优缺点,为电商平台提供数据洞察。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

电商产品评论数据情感分析

背景

随着网上购物越来越流行,人们对于网上购物的需求越来越高,这让京东、淘宝等电商平台得到了很大的发展机遇。但是,这种需求也推动了更多的电商平台的崛起,引发了激烈的竞争。在这种电商平台激烈竞争的大背景下,除了提高产品质量、压低商品价格外,了解更多消费者的心声对于电商平台来说越来越有必要了,其中非常重要的就是对消费者的文本评论数据进行内在信息的数据挖掘分析。

目标

对京东某一热水器进行文本挖掘分析,目标如下。

  • 分析热水器的用户情感倾向。
  • 从评论文本中挖掘出该品牌热水器的优点与不足。
  • 提炼不同品牌热水器的卖点。

分析

本次建模针对京东商城上“美的”品牌热水器的消费者的文本评论数据,在对文本进行基本的机器预处理、中文分词、停用词过滤后,通过建立包括栈式自编码深度学习、语义网络与LDA主题模型等多种数据挖掘模型,实现对文本评论数据的倾向性判断以及所隐藏的信息的挖掘并分析,以期望得到有价值的内在内容。
主要步骤如下。

  1. 利用爬虫工具-八爪鱼采集器,对京东商城进行热水器评论的数据采集。
  2. 但对获取的数据进行基本的处理操作,包括数据预处理、中文分词、停用词过滤等操作。
  3. 文本评论数据经过处理后 ,运用多种手段对评论数据进行多方面分析。
  4. 从对应结果的分析中获取文本评论数据中有价值的内容。

处理过程

数据获取

通过八爪鱼设计采集流程,得到数据,抽取评论一列数据。

数据探索

自己采集的,内容比较清晰。

数据预处理

文本去重

编辑距离去重、Simhash算法去重对于当前需求都有所缺陷,所以为了防止误删,采用简单的文本去重思路—完全相同才删除。

机械压缩去词

去掉连续重复的累赘表达,如“太贵了太贵了太贵了”可以压缩为“太贵了”。

短句删除

子数过少的句子没有意义(相对而言)。

文本评论分词

使用jieba分词。

数据挖掘建模

情感倾向性模型
  • 训练生成词向量
  • 评论集子集的人工标注与映射
  • 训练栈式自编码网络
基于语义网络的评论分析

主要使用ROSTCM6进行分析。

基于LDA模型的主题分析

这里使用gensim这个包提取主题。

# -*- coding: utf-8 -*-
import pandas as pd


def LDA():
    '''
    LDA主题分析
    :return:
    '''
    # 参数初始化
    negfile = 'data/meidi_jd_neg_cut.txt'
    posfile = 'data/meidi_jd_pos_cut.txt'
    stoplist = 'data/stoplist.txt'

    neg = pd.read_csv(negfile, encoding='utf-8', header=None)  # 读入数据
    pos = pd.read_csv(posfile, encoding='utf-8', header=None)
    stop = pd.read_csv(stoplist, encoding='utf-8', header=None, sep='tipdm', engine='python')
    # sep设置分割词,由于csv默认以半角逗号为分割词,而该词恰好在停用词表中,因此会导致读取出错
    # 所以解决办法是手动设置一个不存在的分割词,如tipdm。
    stop = [' ', ''] + list(stop[0])  # Pandas自动过滤了空格符,这里手动添加

    neg[1] = neg[0].apply(lambda s: s.split(' '))  # 定义一个分割函数,然后用apply广播
    neg[2] = neg[1].apply(lambda x: [i for i in x if i not in stop])  # 逐词判断是否停用词,思路同上
    pos[1] = pos[0].apply(lambda s: s.split(' '))
    pos[2] = pos[1].apply(lambda x: [i for i in x if i not in stop])

    from gensim import corpora, models

    # 负面主题分析
    neg_dict = corpora.Dictionary(neg[2])  # 建立词典
    neg_corpus = [neg_dict.doc2bow(i) for i in neg[2]]  # 建立语料库
    neg_lda = models.LdaModel(neg_corpus, num_topics=3, id2word=neg_dict)  # LDA模型训练
    for i in range(3):
        neg_lda.print_topic(i)  # 输出每个主题
        print(neg_lda.print_topic(i))

    # 正面主题分析
    pos_dict = corpora.Dictionary(pos[2])
    pos_corpus = [pos_dict.doc2bow(i) for i in pos[2]]
    pos_lda = models.LdaModel(pos_corpus, num_topics=3, id2word=pos_dict)
    for i in range(3):
        neg_lda.print_topic(i)  # 输出每个主题
        print(pos_lda.print_topic(i))


if __name__ == '__main__':
    LDA()

后续处理

根据主题归纳。
  • 在保证热水器使用方便、价格实惠等优点的基础上,对热水器进行改进,提高产品质量。
  • 提升安装人员及客服人员的整体素质,提高服务质量。安装费用明文收取细则,并进行公开透明,减少乱收费。降低安装费和材料费,以此在大品牌竞争中凸显优势。

补充说明

这应该是本系列实战的最后一篇了(也是比较靠近生活的一篇),到此数据挖掘常用的工具、方法、操作基本上已经使用了一遍。本案例参考书为《Python数据分析与挖掘实战》,与原书有借鉴,但是较大改动代码,修复了原书一些旧版本代码错误。

具体数据集和代码可以查看我的Github,欢迎star或者fork

Python数据分析挖掘实战是一本介绍如何使用Python进行数据分析挖掘的书籍。在电商产品评论数据中,LDA(Latent Dirichlet Allocation)是一种常用的机器学习算法。 LDA算法是一种基于概率图模型的无监督学习算法,它能够从文档集合中自动识别出潜在的主题,并将每个文档分配给一个或多个主题。在电商产品评论数据中,可以使用LDA算法来探索消费者对产品的评价和观点。 首先,需要将电商产品评论数据作为输入,可以使用Python的数据分析库(如pandas)进行导入和预处理。然后,使用自然语言处理库(如NLTK或spaCy)对评论进行分词和清洗,去除无用的标点符号和停用词。 接下来,在预处理后的评论数据上运行LDA算法。首先,需要将评论数据转化为词袋模型或TF-IDF向量表示形式。然后,使用LDA模型进行主题建模,通过训练模型来确定主题和主题词,并将每个评论分配给对应的主题。 最后,可以通过可视化工具(如pyLDAvis)将LDA模型的结果进行可视化,显示主题之间的关系以及每个主题的主题词。 使用LDA算法对电商产品评论数据进行分析和挖掘可以帮助企业了解消费者对产品的偏好和评价,从而改进产品设计和营销策略。此外,还可以帮助企业发现潜在的问题和改进方向,提高产品质量和消费者满意度。 总而言之,Python数据分析挖掘实战可以帮助读者了解如何利用Python进行数据分析挖掘,并且在电商产品评论数据中,LDA算法是一种有效的方法,可以帮助企业挖掘潜在的主题和消费者观点。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周先森爱吃素

你的鼓励是我坚持创作的不懈动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值