遍历所有排列方式
- 前言
- 回溯采用试错的方法解决问题,一旦发现当前步骤失败,回溯算法就返回上一个步骤,继续另一种方案继续试错。
- 回溯算法的优点是速度快,没有尝试所有路径就可能找到答案。当然,如果运气不好,回溯算法就是一个暴力遍历(当答案就是最后一条搜索路径)。
- 回溯算法又称为试探法,它的主要思想如上。回溯算法针对大多数问题有如下特点:问题的答案有多个元素、答案需要满足一些约束(如数独)、寻找答案的方式每个步骤相同。回溯算法逐渐构建答案,并在确定候选元素不满足约束后立即放弃候选元素,知道找到答案的所有元素。
- 简介
- 全排列一般答案为n!种方案,但是当想知道所有的排列方式的时候,DP等算法就不是那么合适了。此时回溯将是不错的选择。
- 问题描述
- 有四本书A,B,C,D,一次只能从图书馆借一本,试问有多少种借书方式?
- 问题分析
- 这个问题很简单,不妨认为有4个空位,第一个位置选择了A,那么第二个位置剩下三种选择,假设第二个位置选择了B,第三个位置剩下两种选择,以此类推。显然,单纯写这个代码是个四层循环,这样写不仅编码困难,对其他问题还要重新编码并且必须要知道输入数组的长度,这不是想要的解法。
- 其实再看看这个循环,它们都很类似。
- 选择第一本书有4中选择,答案就是这四种选择各结尾增加剩下的三本书的排列情况,那么只需要知道剩余三本书的排列集合就行了。
- 排列剩下的三本书的时候,对第一本有三种选择,只需要知道剩下两种排列情况即可。
- 最后,排两本书的时候,只需要知道最后一本是什么就行了。
- 其实就是一个大问题套着小问题,问题都是一个问题,参数有所不同罢了,问题是一样的:输出排序集合。
- 带修改参数递归很适合实现这样的问题。
- 代码
-
# -*-coding:utf-8-*- result = [] def solve(array, solution): global result if len(array) == 0: # 表示所有书都分配完毕,输出答案 result.append(solution) return for i in range(len(array)): new_solution = solution + [array[i]] new_array = array[:i] + array[i+1:] solve(new_array, new_solution) if __name__ == '__main__': input = ['A', 'B', 'C', 'D'] solve(input, []) for item in result: print(item) print("共{}种排列".format(len(result)))
-
- 运行结果
- 补充说明
- 具体代码可以查看我的Github,欢迎Star或者Fork
- 参考书《你也能看得懂的Python算法书》
- 书中错误已经修改