回溯算法-01遍历所有排列方式问题

遍历所有排列方式

  • 前言
    • 回溯采用试错的方法解决问题,一旦发现当前步骤失败,回溯算法就返回上一个步骤,继续另一种方案继续试错。
    • 回溯算法的优点是速度快,没有尝试所有路径就可能找到答案。当然,如果运气不好,回溯算法就是一个暴力遍历(当答案就是最后一条搜索路径)。
    • 回溯算法又称为试探法,它的主要思想如上。回溯算法针对大多数问题有如下特点:问题的答案有多个元素、答案需要满足一些约束(如数独)、寻找答案的方式每个步骤相同。回溯算法逐渐构建答案,并在确定候选元素不满足约束后立即放弃候选元素,知道找到答案的所有元素。
  • 简介
    • 全排列一般答案为n!种方案,但是当想知道所有的排列方式的时候,DP等算法就不是那么合适了。此时回溯将是不错的选择。
  • 问题描述
    • 有四本书A,B,C,D,一次只能从图书馆借一本,试问有多少种借书方式?
  • 问题分析
    • 这个问题很简单,不妨认为有4个空位,第一个位置选择了A,那么第二个位置剩下三种选择,假设第二个位置选择了B,第三个位置剩下两种选择,以此类推。显然,单纯写这个代码是个四层循环,这样写不仅编码困难,对其他问题还要重新编码并且必须要知道输入数组的长度,这不是想要的解法。
    • 其实再看看这个循环,它们都很类似。
      • 选择第一本书有4中选择,答案就是这四种选择各结尾增加剩下的三本书的排列情况,那么只需要知道剩余三本书的排列集合就行了。
      • 排列剩下的三本书的时候,对第一本有三种选择,只需要知道剩下两种排列情况即可。
      • 最后,排两本书的时候,只需要知道最后一本是什么就行了。
    • 其实就是一个大问题套着小问题,问题都是一个问题,参数有所不同罢了,问题是一样的:输出排序集合。
    • 带修改参数递归很适合实现这样的问题。
  • 代码
    •   # -*-coding:utf-8-*-
        
        result = []
        
        
        def solve(array, solution):
            global result
            if len(array) == 0:
                # 表示所有书都分配完毕,输出答案
                result.append(solution)
                return
            for i in range(len(array)):
                new_solution = solution + [array[i]]
                new_array = array[:i] + array[i+1:]
                solve(new_array, new_solution)
        
        
        if __name__ == '__main__':
            input = ['A', 'B', 'C', 'D']
            solve(input, [])
            for item in result:
                print(item)
            print("共{}种排列".format(len(result)))
      
  • 运行结果
  • 补充说明
    • 具体代码可以查看我的Github,欢迎Star或者Fork
    • 参考书《你也能看得懂的Python算法书》
    • 书中错误已经修改
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周先森爱吃素

你的鼓励是我坚持创作的不懈动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值