题目描述
如题,已知一个数列,你需要进行下面两种操作:
1.将某区间每一个数加上x
2.求出某区间每一个数的和
输入格式:
第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。
第二行包含N个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。
接下来M行每行包含3或4个整数,表示一个操作,具体如下:
操作1: 格式:1x y k 含义:将区间[x,y]内每个数加上k
操作2: 格式:2x y 含义:输出区间[x,y]内每个数的和
输出格式:
输出包含若干行整数,即为所有操作2的结果。
输入样例#1:
5 5
1 5 4 2 3
2 2 4
1 2 3 2
2 3 4
1 1 5 1
2 1 4
输出样例#1:
11
8
20
说明
时空限制:1000ms,128M
数据规模:
对于30%的数据:N<=8,M<=10
对于70%的数据:N<=1000,M<=10000
对于100%的数据:N<=100000,M<=100000
解题思路:这道题目可用树状数组或线段树来解决。以下提供两种算法的代码(模板)
代码:(请不要直接拷贝哦)
//(树状数组)
Var n,m,k,l,r,u,j,s1,s2:int64;
i:longint;
a,c,d:array[0..500000]of int64;
function lowbit(x:int64):int64;
begin
exit(x and (-x));
end;
procedure add1(x,y:int64);
begin
while x<=n do begin
inc(c[x],y);
x:=x+lowbit(x);
end;
end;
procedure add2(x,y:int64);
begin
while x<=n do begin
inc(d[x],y);
x:=x+lowbit(x);
end;
end;
function sum1(x:int64):int64;
var
t:int64;
begin
t:=0;
while x>0 do begin
inc(t,c[x]);
dec(x,lowbit(x));
end;
exit(t);
end;
function sum2(x:int64):int64;
var
t:int64;
begin
t:=0;
while x>0 do begin
inc(t,d[x]);
dec(x,lowbit(x));
end;
exit(t);
end;
begin
readln(n,m);
for i:=1 to n do read(a[i]);
for i:=1 to n do
begin
add1(i,a[i]-a[i-1]);
add2(i,(i-1)*(a[i]-a[i-1]));
end;
for i:=1 to m do
begin
read(u);
if u=1 then
begin
readln(l,r,k);
add1(l,k);
add1(r+1,-k);
add2(l,(l-1)*k);
add2(r+1,r*(-k));
end else
begin
readln(l,r);
s1:=(l-1)*sum1(l-1)-sum2(l-1);
s2:=r*sum1(r)-sum2(r);
writeln(s2-s1);
end;
end;
end.
//线段树
#include <cstdio>
#define ll long long
using namespace std;
struct TREE{
ll l,r,sum,lazy;
}tree[400005];
ll n,m,b,c,d,a[100005];
inline int read()
{
ll f=1,x=0;
char ch=getchar();
if (ch=='-')
{
f=-1;
ch=getchar();
}
while ((ch<'0')||(ch>'9')) ch=getchar();
while ((ch>='0')&&(ch<='9'))
{
x=x*10+ch-48;
ch=getchar();
}
return f*x;
}
inline void build(ll root,ll l,ll r)
{
tree[root].l=l;
tree[root].r=r;
if (l==r)
{
tree[root].sum=a[l];
return;
}
ll mid=(l+r)/2;
build(root*2,l,mid);
build(root*2+1,mid+1,r);
tree[root].sum=tree[root*2].sum+tree[root*2+1].sum;
}
inline void js(ll root,ll l,ll r,ll d)
{
tree[root].lazy+=d;
tree[root].sum+=d*(r-l+1);
}
inline void push_down(ll root,ll l,ll r)
{
ll mid=(l+r)/2;
js(root*2,l,mid,tree[root].lazy);
js(root*2+1,mid+1,r,tree[root].lazy);
tree[root].lazy=0;
}
inline void change(ll root,ll l,ll r)
{
int nl=tree[root].l,nr=tree[root].r;
int mid=(nl+nr)/2;
if ((l<=nl)&&(nr<=r))
{
tree[root].sum+=d*(nr-nl+1);
tree[root].lazy+=d;
return;
}
push_down(root,nl,nr);
if (l<=mid) change(root*2,l,r);
if (r>mid) change(root*2+1,l,r);
tree[root].sum=tree[root*2].sum+tree[root*2+1].sum;
}
inline ll find(ll root,ll l,ll r)
{
ll s=0,nl=tree[root].l,nr=tree[root].r;
if ((l<=nl)&&(nr<=r)) return tree[root].sum;
ll mid=(nl+nr)/2;
push_down(root,nl,nr);
if (l<=mid) s+=find(root*2,l,r);
if (r>mid) s+=find(root*2+1,l,r);
return s;
}
int main()
{
n=read(),m=read();
for (ll i=1;i<=n;i++) a[i]=read();
build(1,1,n);
for (ll i=1;i<=m;i++)
{
ll x;
x=read();
if (x==1)
{
b=read(),c=read(),d=read();
change(1,b,c);
} else
{
b=read(),c=read();
printf("%lld\n",find(1,b,c));
}
}
return 0;
}