树状数组基本概念

如果给定一个数组,要你求里面所有数的和,一般都会想到累加。但是当那个数组很大的时候,累加就显得太耗时了,时间复杂度为O(n),并且采用累加的方法还有一个局限,那就是,当修改掉数组中的元素后,仍然要你求数组中某段元素的和,就显得麻烦了。所以我们就要用到树状数组,他的时间复杂度为O(lgn),相比之下就快得多。下面就讲一下什么是树状数组:

         一般讲到树状数组都会少不了下面这个图:

        

         下面来分析一下上面那个图看能得出什么规律:

         据图可知:c1=a1,c2=a1+a2,c3=a3,c4=a1+a2+a3+a4,c5=a5,c6=a5+a6,c7=a7,c8=a1+a2+a3+a4+a5+a6+a7+a8,c9=a9,c10=a9+a10,c11=a11........c16=a1+a2+a3+a4+a5+.......+a16。

         分析上面的几组式子可知,当 i 为奇数时,ci=ai ;当 i 为偶数时,就要看 i 的因子中最多有二的多少次幂,例如,6 的因子中有 2 的一次幂,等于 2 ,所以 c6=a5+a6(由六向前数两个数的和),4 的因子中有 2 的两次幂,等于 4 ,所以 c4=a1+a2+a3+a4(由四向前数四个数的和)。

        (一)有公式:cn=a(n-2^k+1)+.........+an(其中 k 为 n 的二进制表示中从右往左数的 0 的个数)。

         那么,如何求 a^k 呢?求法如下:

int lowbit(int x)
{
     return x&(-x);    
}//返回x对应二进制的最后一位1对应的十进制数 如 lowbit(16)=16;
 

    补码:

x =1: 1 &-1(设位数为8)0000 0001 & 1111 1111 = 1

  x = 6:6 & -6   0000 0110 &1111 1010 = 2

总结一下,其实就是

求出2^p(其中p: x 的二进制表示数中, 右向左数第一个1的位置),如6的二进制表示为110,向左数第零个为0,第一个为1,则p=1,故Lowbit(6) = 2^1 = 2。


 lowbit()的返回值就是 2^k 次方的值。

         求出来 2^k 之后,数组 c 的值就都出来了,接下来我们要求数组中所有元素的和。

         (二)求数组的和的算法如下:

         (1)首先,令sum=0,转向第二步;

         (2)接下来判断,如果 n>0 的话,就令sum=sum+cn转向第三步,否则的话,终止算法,返回 sum 的值;

         (3)n=n - lowbit(n)(将n的二进制表示的最后一个零删掉),回第二步。

可以看出,这个算法就是将这一个个区间的和全部加起来,为什么是效率是log(n)的呢?以下给出证明:
n = n – lowbit(n)这一步实际上等价于将n的二进制的最后一个1减去。而n的二进制里最多有log(n)个1,所以查询效率是log(n)的

          代码实现:

int Sum(int n)
{
    int sum=0;
    while(n>0)
    {
         sum+=c[n];
         n-=lowbit(n);
    }    
    return sum;
}


 

 

         (三)当数组中的元素有变更时,树状数组就发挥它的优势了,算法如下(修改为给某个节点 i 加上 x ):

         (1)当 i<=n 时,执行下一步;否则的话,算法结束;

         (2)ci=ci+x ,i=i+lowbit(i)(在 i 的二进制表示的最后加零),返回第一步。

          代码实现:

void change(int i,int x)
{
     while(i<=n)
     {
          c[i]=c[i]+x;
          i+=lowbit(i);
     }
}

 

举个栗子:

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
#define low(x) x&(-x)
int c[50005],n;
void add(int i,int val)
{
    while(i<=n)
    {
        printf("add c[%d]+= %d\n",i,val);
        c[i]+=val;
        i+=low(i);
    }
}
int getsum(int i)
{
    int sum=0;
    while(i>0)
    {
        printf("sum+=c[%d] \n",i);
        sum+=c[i];
        i-=low(i);
    }
    return sum;
}
int main()
{
    int t,i,k=1;
    cin>>t;
    while(t--)
    {
        scanf("%d",&n);
        c[0]=0;
        int w;
        memset(c,0,sizeof(c));
        for(i=1;i<=n;i++)
        {
            printf("-------\n");
            scanf("%d",&w);
            add(i,w);
        }
        while(cin>>n)printf("---  %d %d\n",n,getsum(n));

    }
    return 0;
}

输入

1
9
1 2 3 4 5 6 7 8 9
1 2 3 4 5 6 7 8 9

输出:

1
9
-------
1 2 3 4 5 6 7 8 9
add c[1]+= 1
add c[2]+= 1
add c[4]+= 1
add c[8]+= 1
-------
add c[2]+= 2
add c[4]+= 2
add c[8]+= 2
-------
add c[3]+= 3
add c[4]+= 3
add c[8]+= 3
-------
add c[4]+= 4
add c[8]+= 4
-------
add c[5]+= 5
add c[6]+= 5
add c[8]+= 5
-------
add c[6]+= 6
add c[8]+= 6
-------
add c[7]+= 7
add c[8]+= 7
-------
add c[8]+= 8
-------
add c[9]+= 9
1
sum+=c[1]
---  1 1
2
sum+=c[2]
---  2 3
3
sum+=c[3]
sum+=c[2]
---  3 6
4
sum+=c[4]
---  4 10
5
sum+=c[5]
sum+=c[4]
---  5 15
6
sum+=c[6]
sum+=c[4]
---  6 21
7
sum+=c[7]
sum+=c[6]
sum+=c[4]
---  7 28
8
sum+=c[8]
---  8 36
9
sum+=c[9]
sum+=c[8]
---  9 45


二维树状数组

BIT可用为二维数据结果。假设你有一个带有点的平面(有非负的坐标)。你有三个问题:

1.在(x , y)设置点

2.从(x , y)移除点

3.在矩形(0 , 0), (x , y)计算点数 - 其中(0 , 0)为左下角,(x , y)为右上角,而边是平行于x轴和y轴。

对于1操作,在(x,y)处设置点,即Update(x,y,1),那么这个Update要怎么写?很简单,因为x,y坐标是离散的,所以我们分别对x,y进行更新即可,函数如下:

void Update(int x,int y,int val)
{
       while(x<=n)
       {
              int y1=y;
              while(y1<=n)
              {
                     C[x][y1]+=val;
                     y1+=y1&(-y1);
              }
              x+=x&(-x);
       }
}


那么根据Update可以推得:GetSum函数为:

int GetSum(int x,int y)
{
       int sum=0;
       while(x>0)
       {
              int y1=y;
              while(y1>0)
              {
                     sum+=C[x][y1];
                     y1-=y1&(-y1);
              }
              x-=x&(-x);
       }
       return sum;
}

求逆序数

树状数组,具体的说是 离散化+树状数组。这也是学习树状数组的第一题.

算法的大体流程就是:

1.先对输入的数组离散化,使得各个元素比较接近,而不是离散的,

2.接着,运用树状数组的标准操作来累计数组的逆序数。

算法详细解释:

1.解释为什么要有离散的这么一个过程?

    刚开始以为999.999.999这么一个数字,对于int存储类型来说是足够了。

    还有只有500000个数字,何必要离散化呢?

    刚开始一直想不通,后来明白了,后面在运用树状数组操作的时候,

    用到的树状数组C[i]是建立在一个有点像位存储的数组的基础之上的,

    不是单纯的建立在输入数组之上。

    比如输入一个9 1 0 5 4,那么C[i]树状数组的建立是在,

    下标 0 1 2 3 4 5 6 7 8 9

    数组 1 1 0 0 1 1 0 0 0 1

    现在由于999999999这个数字相对于500000这个数字来说是很大的,

    所以如果用数组位存储的话,那么需要999999999的空间来存储输入的数据。

    这样是很浪费空间的,题目也是不允许的,所以这里想通过离散化操作,

    使得离散化的结果可以更加的密集。

2. 怎么对这个输入的数组进行离散操作?

   离散化是一种常用的技巧,有时数据范围太大,可以用来放缩到我们能处理的范围;

   因为其中需排序的数的范围0---999 999 999;显然数组不肯能这么大;

   而N的最大范围是500 000;故给出的数一定可以与1.。。。N建立一个一一映射;

   ①当然用map可以建立,效率可能低点;

   ②这里用一个结构体

   struct Node

   {

      int v,ord;

   }p[510000];和一个数组a[510000];

   其中v就是原输入的值,ord是下标;然后对结构体按v从小到大排序;

   此时,v和结构体的下标就是一个一一对应关系,而且满足原来的大小关系;

   for(i=1;i<=N;i++) a[p[i].ord]=i;

   然后a数组就存储了原来所有的大小信息;

   比如 9 1 0 5 4 ------- 离散后aa数组就是 5 2 1 4 3;

   具体的过程可以自己用笔写写就好了。

3. 离散之后,怎么使用离散后的结果数组来进行树状数组操作,计算出逆序数?

    如果数据不是很大, 可以一个个插入到树状数组中,

    每插入一个数, 统计比他小的数的个数,

    对应的逆序为 i- getsum( aa[i] ),

    其中 i 为当前已经插入的数的个数,

    getsum( aa[i] )为比 aa[i] 小的数的个数,

    i- sum( aa[i] ) 即比 aa[i] 大的个数, 即逆序的个数

    但如果数据比较大,就必须采用离散化方法

    假设输入的数组是9 1 0 5 4, 离散后的结果aa[] = {5,2,1,4,3};

数组aa即原数组的离散后的大小等级

在离散结果中间结果的基础上,那么其计算逆序数的过程是这么一个过程。

1,输入5,   调用upDate(5, 1),把第5位设置为1

1 2 3 4 5

0 0 0 0 1

计算1-5上比5小的数字存在么? 这里用到了树状数组的getSum(5) = 1操作,

现在用输入的下标1 - getSum(5) = 0 就可以得到对于5的逆序数为0。

2. 输入2, 调用upDate(2, 1),把第2位设置为1

1 2 3 4 5

0 1 0 0 1

计算1-2上比2小的数字存在么? 这里用到了树状数组的getSum(2) = 1操作,

现在用输入的下标2 - getSum(2) = 1 就可以得到对于2的逆序数为1。

3. 输入1, 调用upDate(1, 1),把第1位设置为1

1 2 3 4 5

1 1 0 0 1

计算1-1上比1小的数字存在么? 这里用到了树状数组的getSum(1) = 1操作,

现在用输入的下标 3 - getSum(1) = 2 就可以得到对于1的逆序数为2。

4. 输入4, 调用upDate(4, 1),把第5位设置为1

1 2 3 4 5

1 1 0 1 1

计算1-4上比4小的数字存在么? 这里用到了树状数组的getSum(4) = 3操作,

现在用输入的下标4 - getSum(4) = 1 就可以得到对于4的逆序数为1。

5. 输入3, 调用upDate(3, 1),把第3位设置为1

1 2 3 4 5

1 1 1 1 1

计算1-3上比3小的数字存在么? 这里用到了树状数组的getSum(3) = 3操作,

现在用输入的下标5 - getSum(3) = 2 就可以得到对于3的逆序数为2。

6. 0+1+2+1+2 = 6 这就是最后的逆序数

分析一下时间复杂度,首先用到快速排序,时间复杂度为O(NlogN),

后面是循环插入每一个数字,每次插入一个数字,分别调用一次upData()和getSum()

外循环N, upData()和getSum()时间O(logN) => 时间复杂度还是O(NlogN).

最后总的还是O(NlogN).



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值