【学习笔记】详解树状数组

树状数组是一种数据结构,提供O(logn)时间内的单点修改和区间求和操作,比线段树有更优的常数因子。它利用二进制特性进行快速更新和查询,常见于数组操作问题。文章通过代码示例解释了树状数组的核心操作和单点修改、区间查询的实现原理。
摘要由CSDN通过智能技术生成

前言

树状数组二叉索引树(Binary Indexed Tree),又以其发明者命名为 Fenwick 树。其初衷是解决数据压缩里的累积频率的计算问题,现多用于高效计算数列的前缀和区间和。它可以以 O(logn) 的时间得到任意前缀和。并同时支持在 O(logn) 时间内支持动态单点值的修改。空间复杂度 O(n)


一、树状数组概括

树状数组是一个查询修改复杂度都为log(n)数据结构。主要用于数组的单点修改&&区间求和,另外一个拥有类似功能的是线段树

具体区别和联系如下:

1.两者在复杂度上同级, 但是树状数组常数明显优于线段树, 其编程复杂度也远小于线段树.

2.树状数组的作用被线段树完全涵盖, 凡是可以使用树状数组解决的问题, 使用线段树一定可以解决, 但是线段树能够解决的问题树状数组未必能够解决.

3. 树状数组的突出特点是其编程的极端简洁性, 使用lowbit技术可以在很短的几步操作中完成树状数组的核心操作,其代码效率远高于线段树


二、树状数组的应用

1.单点修改+区间查询

代码示例


int lowbit(int x)
{
  return x & (-x);//表示求数组下标二进制的非0最低位所表示的值
}

//查找1~x的和
int find_sum(int x)
{
  int ans = 0;
  while(x)
  {
    ans += c[x];//从右往左累加求和
    x -= lowbit(x);
  }
  return x;
}

//单点修改
void gexi(int x,int v)
{
  a[x] += v;
  while(x <= n)
  {
    c[x] += v;
    x += lowbit(x);//由叶子节点向上更新树状数组C,从左往右更新
  }
}

实现原理

模板中最常见的三个函数:

①取数组下标二进制非0最低位所表示的值;
②单点更新;
③区间查询。

树状数组,顾名思义是树状的数组,我们首先引入二叉树,叶子节点代表A[1]~A[8]。

现在变形一下:

现在定义每一列的顶端节点C数组(其实C数组就是树状数组),如图:

理解树状数组的重点

C[i]代表子树的叶子节点的权值之和,如图可以知道:

C[1]=A[1];

C[2]=A[1]+A[2];

C[3]=A[3];

C[4]=A[1]+A[2]+A[3]+A[4];

C[5]=A[5];

C[6]=A[5]+A[6];

C[7]=A[7];

C[8]=A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7]+A[8];

首先是区间查询(求和):

利用C[i]数组,求A数组前i项和,举两个栗子:

①i=7

前7项和:sum[7]=A[1]+A[2]+A[3]+A[4]+A[5]+A[6]+A[7];

而C[4]=A[1]+A[2]+A[3]+A[4];C[6]=A[5]+A[6];C[7]=A[7];

可以得到:sum[7]=C[4]+C[6]+C[7]。

数组下标写成二进制:sum[(111)]=C[(100)]+C[(110)]+C[(111)];

②i=5

前5项和:sum[5]=A[1]+A[2]+A[3]+A[4]+A[5];

而C[4]=A[1]+A[2]+A[3]+A[4];C[5]=A[5];

可以得到:sum[5]=C[4]+C[5];

数组下标写成二进制:sum[(101)]=C[(100)]+C[(101)];

细细观察二进制,树状数组追其根本就是二进制的应用,结合代码演示一下代码过程:


//查找1~x的和
int find_sum(int x)
{
  int ans = 0;
  while(x)
  {
    ans += c[x];
    x -= lowbit(x);
  }
  return x;
}
代码推演

对于i=7进行演示:


7(111)  ans+=C[7]

lowbit(7)=001 7-lowbit(7)=6(110) ans+=C[6]

lowbit(6)=010 6-lowbit(6)=4(100) ans+=C[4]

lowbit(4)=100 4-lowbit(4)=0(000) break;

对于i=5进行演示:


5(101)  ans+=C[5]

lowbit(5)=001 5-lowbit(5)=4(100) ans+=C[4]

lowbit(4)=100 4-lowbit(4)=0(000) break;

然后单点更新:

当我们修改A数组中某个值时,应当如何更新C数组呢?回想一下,区间查询的过程,再看一下上文中列出的过程。这里声明一下:单点更新实际上是不修改A数组的,而是修改树状数组C,向上更新区间长度为lowbit(i)所代表的节点的值。


//单点修改
void gexi(int x,int v)
{
  a[x] += v;
  while(x <= n)
  {
    c[x] += v;
    x += lowbit(x);
  }

如图:当在A[1]加上值val,即更新A[1]时,需要向上更新C[1],C[2],C[4],C[8],这个时候只需将这4个节点每个节点的值加上val即可。这里为了方便大家理解,人为添加了个A数组表示每个叶子节点的值,事实上A数组并不用修改,实际运用中也可不设置A数组,单点更新只需修改树状数组C即可。下标写成二进制:C[(001)],C[(010)],C[(100)],C[(1000)];

lowbit(1)=001 1+lowbit(1)=2(010) C[2]+=val;

lowbit(2)=010 2+lowbit(2)=4(100) C[4]+=val;

lowbit(4)=100 4+lowbit(4)=8(1000) C[8]+=val;

由于c[1] c[2] c[4] c[8] 都包含有A[1],所以在更新A[1]时实际上就是更新每一个包含A[1]的节点。

题目

代码

#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,q,a[1000001],op,t,tt,c[1000001];
int lowbit(int x)
{
  return (x & (-x));
}
void add(int p,int num)
{
  while(p <= n)
  {
    c[p] += num;
    p += lowbit(p);
  }
}
int query(int p)
{
  int tmp = 0;
  while(p)   
  {   
    tmp += c[p];      
    p -= lowbit(p);   
  }   
  return tmp;
}
signed main()
{
  cin>>n>>q;
  for(int i = 1;i <= n;i++)
  {
    scanf("%lld",&a[i]);
    add(i,a[i]);
  }
  while(q--)
  {
    cin>>op>>t>>tt;
    if(op == 1)
    {
      add(t,tt);
    }
    else
    {
      cout<<query(tt) - query(t - 1)<<endl;
    }
  }
  return 0;
}

2.区间修改+单点查询

思路

可以利用差分的思想。具体可见一维,二维差分の详解(简单易懂)_一维差分-CSDN博客

于是只需要预处理出来一个差分数组,再利用树状数组进行单点操作即可。

题目

代码

#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,q,a[1000001],op,t,tt,c[1000001];
int lowbit(int x)
{
  return (x & (-x));
}
void add(int p,int num)
{
  while(p <= n)
  {
    c[p] += num;
    p += lowbit(p);
  }
}
int query(int p)
{
  int tmp = 0;
  while(p)   
  {   
    tmp += c[p];      
    p -= lowbit(p);   
  }   
  return tmp;
}
signed main()
{
  cin>>n>>q;
  for(int i = 1;i <= n;i++)
  {
    scanf("%lld",&a[i]);
    add(i,a[i]);
  }
  while(q--)
  {
    cin>>op>>t>>tt;
    if(op == 1)
    {
      add(t,tt);
    }
    else
    {
      cout<<query(tt) - query(t - 1)<<endl;
    }
  }
  return 0;
}

3.单点修改操作

思路

假如题目要求把a改成b,那么就相当于把a加上(b - a)。从而就转化成了上一道题。

题目

代码

#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,q,a[1000001],l,r,x,c[1000001];
char op;
int lowbit(int x)
{
  return (x & (-x));
}
void add(int p,int num)
{
  while(p <= n)
  {
    c[p] += num;
    p += lowbit(p);
  }
}
int query(int p)
{
  int tmp = 0;
  while(p)   
  {   
    tmp += c[p];      
    p -= lowbit(p);   
  }   
  return tmp;
}
signed main()
{
  cin>>n>>q;
  for(int i = 1;i <= n;i++) scanf("%lld",&a[i]);
  while(q--)
  {
    cin>>op>>l;
    if(op == 'A')
    {
      cin>>r>>x;
      add(l,x);
      add(r + 1,-x);
    }
    if(op == 'Q')
    {
      cout<<a[l] + query(l)<<endl;
    }
    if(op == 'X')
    {
      int t = a[l] + query(l);
      add(l,1 - t);
      add(l + 1,t - 1);
    }
  }
  return 0;
}

4.区间修改+区间查询

思路

直接上图

 因此只需维护两个树状数组即可
  一个是差分数组的树状数组c[i],还有一个是i*b[i]的树状数组d[i]

题目

代码

#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,q,a[1000001],l,r,x,c[1000001],d[1000001];
char op;
int lowbit(int x)
{
  return (x & (-x));
}
void add(int o[],int p,int num)
{
  while(p <= n)
  {
    o[p] += num;
    p += lowbit(p);
  }
}
int query(int o[],int p)
{
  int tmp = 0;
  while(p)   
  {   
    tmp += o[p];    
    p -= lowbit(p);   
  }   
  return tmp;
}
int f(int x)
{
  return query(c,x) * (x + 1) - query(d,x);
}
signed main()
{
  cin>>n>>q;
  for(int i = 1;i <= n;i++) scanf("%lld",&a[i]);
  for(int i = 1;i <= n;i++)
  {
    int b = a[i] - a[i - 1];
    add(c,i,b);
    add(d,i,b * i);
  }
  while(q--)
  {
    cin>>op>>l>>r;
    if(op == 'C')
    {
      cin>>x;
      add(c,l,x);
      add(d,l,l * x);
      add(c,r + 1,-x);
      add(d,r + 1,-(r + 1) * x);
    }
    else cout<<f(r) - f(l - 1)<<endl;
  }
  return 0;
}

5.求逆序对

思路

我们先来模拟一下一种求逆序对的方法

例如:a =  {5,4,2,6,3,1}

我们先定义一个b数组,我们遍历a数组令b[a[i]] = 1,逆序对数就为(b[i + 1] + b[i + 2] + …… + b[n])的和,其实就是以a数组为下标在b数组中填1,对于a[i],如果b[i]之后已经出现1,那么后面1的下标均可与a[i]构成逆序对。

    模拟:开始b都为0

    1.b = {0,0,0,0,1,0}      sumb(6,6) = 0,后面没有一,说明还没有数与5构成逆序对

    2.b = {0,0,0,1,1,0}      sumb(5,6) = 1,4与5构成了逆序对

    3.b = {0,1,0,1,1,0}      sumb(3,6) = 2,2与4,5均构成了逆序对

    4.b = {0,1,0,1,1,1}      sumb(7,6) 不存在

    5.b = {0,1,1,1,1,1}      sumb(4,6) = 3,3与4,5,6均构成了逆序对

    6.b = {1,1,1,1,1,1}      sumb(2,6) = 5,1与其他5个数都构成了逆序对

    所以答案ans = 0 + 1 + 2 + 3 + 5 = 11

然后这一过程我们就可以用树状数组来操作,把b数组看成树状数组,令b[a[i]] = 1的过程我们就可以看成数状数组的更新操作,求sumb就可以看成区间查询操作,最后对每次区间查询求和即为逆序对的个数。

 

题目

代码

#include<bits/stdc++.h>
#define int long long
using namespace std;
int n,q,a[10000001],c[10000001],ans,maxn;
int lowbit(int x)
{
  return (x & (-x));
}
void add(int p,int num)
{
  while(p <= maxn)
  {
    c[p] += num;
    p += lowbit(p);
  }
}
int query(int p)
{
  int tmp = 0;
  while(p)   
  {   
    tmp += c[p];      
    p -= lowbit(p);   
  }   
  return tmp;
}
signed main()
{
  cin>>n;
  for(int i = 1;i <= n;i++)
  {
    scanf("%lld",&a[i]);
    maxn = max(maxn,a[i]);
  }
  for(int i = 1;i <= n;i++) add(a[i],1),ans += (query(maxn) - query(a[i]));;
  //for(int i = 1;i <= n;i++) 
  cout<<ans;
  return 0;
}

总结

树状数组的重点就是利用二进制的变化动态地更新树状数组

树状数组的每一个节点并不是代表原数组的值,而是包含了原数组多个节点的值。

所以在更新A[1]时需要将所有包含A[1]的C[i]都加上val这也就利用到了二进制的神奇之处。

如果是更新A[i]的值,则每一次对C[i] 中的 i 向上更新,即每次i+=lowbit(i),这样就能C[i] 以及C[i] 的所有父节点都加上val。

反之求区间和也是和更新节点值差不多,只不过每次 i-=lowbit(i)。

结语

如果这篇文章对您有帮助的话,请记得点赞收藏加关注吖(●'◡'●)

  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值