POJ--3017--Cut the Sequence--DP优化

该博客探讨了如何解决POJ 3017问题,即找到一个数字序列的最佳划分,使得每个划分块的和不超过M,目标是最小化所有划分块的最大值。博主介绍了使用动态规划(DP)的方法,并提出利用单调队列来优化,存储满足和不超过M的决策,从而有效地计算每个点的决策个数。
摘要由CSDN通过智能技术生成

题目大意:求一个数字序列的划分,每一个划分块的和不大于M,求出所有划分块最大值的最小值。

DP方程:dp[i] = min{dp[j]+max(a[j+1],a[i])}

用一个单调队列存储所有可行的决策,这个单调队列里面存储条件是队列范围的所有元素和不大于M,所以队列元素的个数就是每个点的决策个数。

更详细的题解可以看一下别人的blog

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
const int MAXN = 100020;
const LL INF =(LL)1e19;
LL n,m;
LL dp[MAXN];
int q[MAXN],front,rear;
LL sum[MAXN];
LL a[MAXN];


void solve()
{
    dp[0]=0;
    for(int i=1;i<=n;i++)dp[i]=INF;
    front=rear=0;
    int st=0;
    int tar;
    for(int i=1;i<=n;i++)
    {
        while(rear>front&&a[i]>=a[q[rear-1]])rear--;
        q[rear++]=i;
        while(sum[i]-sum[st]>m)st++;
        while(q[front]<=st)front++;

        dp[i]=dp[st]+a[q[front]];
        for(int j=front;j<rear-1;j++)
        {
            dp[i]=min(dp[i],dp[q[j]]+a[q[j+1]]);
        }

    }
    printf("%lld\n",dp[n]);
}

int main()
{
    bool fd=false;
    sum[0]=0;
    scanf("%lld%lld\n",&n,&m);
    for(int i=1;i<=n;i++)
    {
        scanf("%lld",&a[i]);
        sum[i]=sum[i-1]+a[i];
        if(a[i]>m)
        {
            fd=true;
        }
    }
    if(fd)
    {
        printf("-1\n");
    }
    else
    {
        solve();
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值