互质奥数题

题目

设S={1,2,…,100},求最小的正整数n,使得S的每一个n元子集都含有4个两两互质的数

分析

1~100中的质数2357...26个,记为集合A
含因数2的数:2*22*3...2*50(所有偶数)49个,记为①类
含因数3的数:3*33*5,3*7,3*9...3*3316个,记为②类
含因数5的数:5*55*75*115*135*175*196个,记为③类
含因数7的数:7*77*117*133个,记为④类
{2,①}+{3,②}+{5,③}不含4个两两互质的数,因为选择4个元素,必有两个元素在同一类中,而同一类中的数不互质。
∵{2,①}+{3,②}+{5,③}74个
∴n=74,有一种情况不含4个两两互质的数

证明

n=75
令B={①,②,③,④}
Ⅰ,4个及以上∈A,71个∈B
∴属于A的四个元素两两互质
Ⅱ,3个∈A,72个∈B
{①,②,③,④}中有2个落选,记为x,y
(1)x∉{22,33,55,77},y∉{22,33,55,77}
{22,33,55,77}两两互质
(2)x∈{22,33,55,77},y∉{22,33,55,77}
(一)x=22
{2
11,33,55,77}两两互质
(二)x=3
3
{22,311,55,77}两两互质
(三)x=55
{2
2,33,511,77}两两互质
(四)x=7
7
{22,33,55,711}两两互质

(3)x∈{22,33,55,77},y∈{22,33,55,77}
(一)x=22,y=33
{211,313,55,77}两两互质
(二)x=22,y=55
{211,33,513,77}两两互质
(三)x=22,y=77
{211,33,55,713}两两互质
(四)x=33,y=55
{22,311,513,77}两两互质
(五)x=55,y=77
{22,33,511,713}两两互质
综上,均存在两两互质的4个数
Ⅲ,2个∈A,73个∈B
∵|{①,②,③,④}|=74
∴{①,②,③,④}中有1个落选,记为x
(1)x∉{22,33,55,77}
{22,33,55,77}两两互质
(2)x=22
{2
11,33,55,77}两两互质
(3)x=3
3
{22,311,55,77}两两互质
(4)x=55
{2
2,33,511,77}两两互质
(5)x=7
7
{22,33,55,711}两两互质
综上,均存在两两互质的4个数
Ⅳ,1个∈A,74个∈B
{①,②,③,④}全部选上
{22,33,55,77}两两互质
证毕

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值