题目
设S={1,2,…,100},求最小的正整数n,使得S的每一个n元子集都含有4个两两互质的数
分析
1~100中的质数2,3,5,7,...共26个,记为集合A
含因数2的数:2*2,2*3...2*50(所有偶数)共49个,记为①类
含因数3的数:3*3,3*5,3*7,3*9...3*33共16个,记为②类
含因数5的数:5*5,5*7,5*11,5*13,5*17,5*19共6个,记为③类
含因数7的数:7*7,7*11,7*13共3个,记为④类
{2,①}+{3,②}+{5,③}不含4个两两互质的数,因为选择4个元素,必有两个元素在同一类中,而同一类中的数不互质。
∵{2,①}+{3,②}+{5,③}共74个
∴n=74,有一种情况不含4个两两互质的数
证明
n=75
令B={①,②,③,④}
Ⅰ,4个及以上∈A,71个∈B
∴属于A的四个元素两两互质
Ⅱ,3个∈A,72个∈B
{①,②,③,④}中有2个落选,记为x,y
(1)x∉{22,33,55,77},y∉{22,33,55,77}
{22,33,55,77}两两互质
(2)x∈{22,33,55,77},y∉{22,33,55,77}
(一)x=22
{211,33,55,77}两两互质
(二)x=33
{22,311,55,77}两两互质
(三)x=55
{22,33,511,77}两两互质
(四)x=77
{22,33,55,711}两两互质
(3)x∈{22,33,55,77},y∈{22,33,55,77}
(一)x=22,y=33
{211,313,55,77}两两互质
(二)x=22,y=55
{211,33,513,77}两两互质
(三)x=22,y=77
{211,33,55,713}两两互质
(四)x=33,y=55
{22,311,513,77}两两互质
(五)x=55,y=77
{22,33,511,713}两两互质
综上,均存在两两互质的4个数
Ⅲ,2个∈A,73个∈B
∵|{①,②,③,④}|=74
∴{①,②,③,④}中有1个落选,记为x
(1)x∉{22,33,55,77}
{22,33,55,77}两两互质
(2)x=22
{211,33,55,77}两两互质
(3)x=33
{22,311,55,77}两两互质
(4)x=55
{22,33,511,77}两两互质
(5)x=77
{22,33,55,711}两两互质
综上,均存在两两互质的4个数
Ⅳ,1个∈A,74个∈B
{①,②,③,④}全部选上
{22,33,55,77}两两互质
证毕