中国剩余定理(孙子定理)(互质版)

题外话

作为一个离2023NOIP只剩一百多天但老师还没讲数论的初三(准高一)蒟蒻,现在决定浅浅自救一下

正文

先放一道模板题

看完洛谷上这道题目后,大家是不是有种看小学奥数的感觉(哈哈哈反正我是这样),所以说这个定理虽然是提高组的东西(蓝题),但并不是特别难理解,代码也是特别好码,相信你可以码完一次就会背(逃)。

学这个定理要会的前置知识是同余,这里也不再多讲。下文主要涉及两个性质:                              1.若a≡b(mod m),x≡y(mod m),则a+x≡(b+y)(mod m);                                                                  2.若a≡b(mod m),x≡y(mod m),则ax≡by(mod m);                                                                         我们把这里的x和y特殊化一下,令x=y,那么原来所得到的性质可以描述为:                                 3.若a≡b(mod m),则a+x≡(b+x)(mod m);                                                                                         4.若a≡b(mod m),则ax≡bx(mod m);

中国剩余定理主要是解决形如

 的方程,x为未知数,其中任意两模数互质,即b1,b2,......bn两两互质。

如果你不会中国剩余定理,那么你看到这样的题目时应该是一头雾水吧(可能是因为我太蒻了反正我是这样的),那么接下来我们先就这样的方程举一个简单的例子,来解决这类问题。比如:

x≡r1(mod 3) 
 
x≡r2(mod 5)                                                                                                                                             
x≡r3(mod 7)                                                                                                                                        其中r1,r2,r3为常数,需要求解x。

由于我们要求解x,所以我们可以通过试数的方式为x赋值。我们分别让x与同样的数字k关于模3,5,7同余,就可以得到:

70=(5x7)x2≡1(mod 3)        70≡0(mod 5)        70≡0(mod 7) 
 
21=(3x7)x1≡1(mod 5)        21≡0(mod 3)        21≡0(mod 7) 
 
15=(3x5)x1≡1(mod 7)        15≡0(mod 3)        15≡0(mod 5) 

由同余的性质4可得:                                                                                                          70r1≡r1(mod 3)        70r1≡0(mod 5)        70r1≡0(mod 7) 
 
21r2≡0(mod 3)         21r2≡r2(mod 5)        21r2≡0(mod 7) 
 
15r3≡0(mod 3)        15r3≡0(mod 5)        15r3≡r3(mod 7)                                                                   由同余的性质1可得:                                                                                                                           70r1+21r2+15r3≡r1(mod 3) 
 
70r1+21r2+15r3≡r2(mod 5) 
 
70r1+21r2+15r3≡r3(mod 7)                                                                                                                所以有                                                                                                                                              x≡70r1+21r2+15r3+3m                                                                                                                     x≡70r1+21r2+15r3+5n                                                                                                                      
x≡70r1+21r2+15r3+7p

最后得到的解为x≡(70r1+21r2+15r3)(mod 105)。我们发现,105为3,5,7的最小公倍数,由于3,5,7三者互质,所以最后得到的模数也可以说是三者的乘积或者最小公倍数。由于我们要求的x为最小的非负整数,所以最后要取模105,从而使x尽可能的小。

然后我们把上文的解题过程推广一下,以

的形式来解题,显然我们需要求出各模数的乘积,所以我们设M=\prod_{i=1}^{k} b_i{}(第一次用LateX,所以这个公式打的有点参差不齐了()),即M=b1*b2*...*bn,再设M_i{}=\frac{M}{b_i{}},以及Mi*ti≡(mod bi),则我们要求解的x就等于\sum_{i=1}^{k} a_i{}M_i{}t_i{},则最小非负整数解x0即为x0=x%M。

中国剩余定理,模板代码如下:

//中国剩余定理,该类题目大致为:
//给定n个方程,分别为x%a1=b1,x%a2=b2,......x%an=bn
//(这里任意两个模数互质) 
//然后让你求x的最小非负整数解 
#include<iostream>
#include<cstdio>
#include<cmath>
#include<string>
#include<cstring>
#include<algorithm>
#include<cassert>
#include<stack>
#include<queue>
#include<vector>
#include<map>
#include<cstdlib>
using namespace std;
#define ll long long
#define ull unsigned long long
int read()
{
	int now=0,nev=1; 
	char c=getchar();
	while(c<'0' || c>'9') 
	{ 
		if(c=='-') 
			nev=-1; 
		c=getchar();
	}
	while(c>='0' && c<='9') 
	{ 
		now=(now<<1)+(now<<3)+(c&15); 
		c=getchar(); 
	}
	return now*nev;
}
const int MAXN=15;
int n;
int a[MAXN],b[MAXN];//模数a和余数b 
ll sum=1;//记录模数的乘积 
ll t[MAXN];
ll ans; 
ll d,x,y;
void exgcd(ll a,ll b,ll &d,ll &x,ll &y)
{
	if(b==0)
	{
		d=a;
		x=1;
		y=0;
	}
	else
	{
		exgcd(b,a%b,d,x,y);
		ll t=x;
		x=y;
		y=t-a/b*y;
	}
}
int main()
{
	n=read();
	for(int i=1;i<=n;i++)
	{
		a[i]=read(),b[i]=read();
		sum*=a[i];
	}
	ll Mi;
	for(int i=1;i<=n;i++)
	{
		Mi=sum/a[i];
		exgcd(Mi,a[i],d,x,y);
		ans=((ans+Mi*x*b[i])%sum+sum)%sum;
	}
	printf("%lld",ans);
	return 0;
}

结尾

至此,中国剩余定理的讲解就结束了。但中国剩余定理只能解决模数两两互质的同余方程组(CRT),若是要解决模数不一定两两互质的同余方程组,则需要用扩展中国剩余定理(EXCRT)来解决。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值