1、题目描述
设有N堆石子排成一排,其编号为1,2,3,…,N。
每堆石子有一定的质量,可以用一个整数来描述,现在要将这N堆石子合并成为一堆。
每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。
例如有4堆石子分别为 1 3 5 2, 我们可以先合并1、2堆,代价为4,得到4 5 2, 又合并 1,2堆,代价为9,得到9 2 ,再合并得到11,总代价为4+9+11=24;
如果第二步是先合并2,3堆,则代价为7,得到4 7,最后一次合并代价为11,总代价为4+7+11=22。
问题是:找出一种合理的方法,使总的代价最小,输出最小代价。
输入格式
第一行一个数N表示石子的堆数N。
第二行N个数,表示每堆石子的质量(均不超过1000)。
输出格式
输出一个整数,表示最小代价。
数据范围
1≤N≤3001≤N≤300
输入样例:
4 1 3 5 2
输出样例:
22
2、分析
3、代码
import java.io.*;
import java.util.*;
public class Main{
static int N = 310, M = 1010;
static int[][] f = new int[N][N];
static int[] g;
static int[] s;
public static void main(String[] args) {
Scanner in = new Scanner(new InputStreamReader(System.in));
int n = in.nextInt();
g = new int[n + 1];
s = new int[n + 1];
for(int i = 1;i <= n;i ++) {
g[i] = in.nextInt();
s[i] = s[i-1] + g[i];
}
//区间dp
for(int len = 2;len <= n;len ++) { //枚举长度
for(int i = 1;i + len -1 <= n;i ++) { //枚举左端点
int j = i + len - 1;
f[i][j] = Integer.MAX_VALUE;
for(int k = i;k < j;k ++)
f[i][j] = Math.min(f[i][j], f[i][k] + f[k+1][j] + s[j] - s[i-1]);
}
}
System.out.println(f[1][n]);
}
}