AcWing 石子合并

1、题目描述

设有N堆石子排成一排,其编号为1,2,3,…,N。

每堆石子有一定的质量,可以用一个整数来描述,现在要将这N堆石子合并成为一堆。

每次只能合并相邻的两堆,合并的代价为这两堆石子的质量之和,合并后与这两堆石子相邻的石子将和新堆相邻,合并时由于选择的顺序不同,合并的总代价也不相同。

例如有4堆石子分别为 1 3 5 2, 我们可以先合并1、2堆,代价为4,得到4 5 2, 又合并 1,2堆,代价为9,得到9 2 ,再合并得到11,总代价为4+9+11=24;

如果第二步是先合并2,3堆,则代价为7,得到4 7,最后一次合并代价为11,总代价为4+7+11=22。

问题是:找出一种合理的方法,使总的代价最小,输出最小代价。

输入格式

第一行一个数N表示石子的堆数N。

第二行N个数,表示每堆石子的质量(均不超过1000)。

输出格式

输出一个整数,表示最小代价。

数据范围

1≤N≤3001≤N≤300

输入样例:

4
1 3 5 2

输出样例:

22

2、分析

 

3、代码

import java.io.*;
import java.util.*;

public class Main{
    static int N = 310, M = 1010;
    static int[][] f = new int[N][N];
    static int[] g;
    static int[] s;
    
    public static void main(String[] args) {
        Scanner in = new Scanner(new InputStreamReader(System.in));
        int n = in.nextInt();
        
        g = new int[n + 1];
        s = new int[n + 1];
        for(int i = 1;i <= n;i ++) {
            g[i] = in.nextInt();
            s[i] = s[i-1] + g[i];
        }
        
        //区间dp
        for(int len = 2;len <= n;len ++) { //枚举长度
            for(int i = 1;i + len -1 <= n;i ++) { //枚举左端点
                int j = i + len - 1;
                f[i][j] = Integer.MAX_VALUE;
                for(int k = i;k < j;k ++) 
                    f[i][j] = Math.min(f[i][j], f[i][k] + f[k+1][j] + s[j] - s[i-1]);
            }
        }
        System.out.println(f[1][n]);
    } 
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值